Souhir Zghal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2262226/publications.pdf

Version: 2024-02-01

29	1,000	16	23
papers	citations	h-index	g-index
30	30	30	387 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Free vibration analysis of carbon nanotube-reinforced functionally graded composite shell structures. Applied Mathematical Modelling, 2018, 53, 132-155.	4.2	119
2	A modified FSDT-based four nodes finite shell element for thermal buckling analysis of functionally graded plates and cylindrical shells. Engineering Structures, 2019, 178, 444-459.	5 . 3	109
3	Mechanical buckling analysis of functionally graded power-based and carbon nanotubes-reinforced composite plates and curved panels. Composites Part B: Engineering, 2018, 150, 165-183.	12.0	103
4	Dynamic analysis of functionally graded carbon nanotubes-reinforced plate and shell structures using a double directors finite shell element. Aerospace Science and Technology, 2018, 78, 438-451.	4.8	95
5	Static analysis of functionally graded carbon nanotube-reinforced plate and shell structures. Composite Structures, 2017, 176, 1107-1123.	5.8	87
6	Thermal post-buckling analysis of functionally graded material structures using a modified FSDT. International Journal of Mechanical Sciences, 2018, 144, 74-89.	6.7	81
7	Finite rotation three and four nodes shell elements for functionally graded carbon nanotubes-reinforced thin composite shells analysis. Computer Methods in Applied Mechanics and Engineering, 2018, 329, 289-311.	6.6	62
8	Non-linear bending analysis of nanocomposites reinforced by graphene-nanotubes with finite shell element and membrane enhancement. Engineering Structures, 2018, 158, 95-109.	5 . 3	57
9	Static bending analysis of beams made of functionally graded porous materials. Mechanics Based Design of Structures and Machines, 2022, 50, 1012-1029.	4.7	49
10	Large deflection response-based geometrical nonlinearity of nanocomposite structures reinforced with carbon nanotubes. Applied Mathematics and Mechanics (English Edition), 2020, 41, 1227-1250.	3.6	37
11	Thermo-elastic buckling and post-buckling analysis of functionally graded thin plate and shell structures. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42, 1 .	1.6	37
12	Post-buckling behavior of functionally graded and carbon-nanotubes based structures with different mechanical loadings. Mechanics Based Design of Structures and Machines, 2022, 50, 2997-3039.	4.7	33
13	Model reduction methods for viscoelastic sandwich structures in frequency and time domains. Finite Elements in Analysis and Design, 2015, 93, 12-29.	3.2	30
14	Vibrational behavior of beams made of functionally graded materials by using a mixed formulation. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020, 234, 3650-3666.	2.1	29
15	Buckling responses of porous structural components with gradient power-based and sigmoid material variations under different types of compression loads. Composite Structures, 2021, 273, 114313.	5.8	28
16	Vibration characteristics of plates and shells with functionally graded pores imperfections using an enhanced finite shell element. Computers and Mathematics With Applications, 2021, 99, 52-72.	2.7	24
17	Thermal free vibration analysis of functionally graded plates and panels with an improved finite shell element. Journal of Thermal Stresses, 0, , 1-27.	2.0	7
18	Free vibration analysis of porous beams with gradually varying mechanical properties. Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment, 0, , 147509022110477.	0.5	4

#	Article	IF	CITATIONS
19	Reduced-order model for non-linear dynamic analysis of viscoelastic sandwich structures in time domain. MATEC Web of Conferences, 2014, 16, 08003.	0.2	1
20	Static Behavior of Carbon Nanotubes Reinforced Functionally Graded Nanocomposite Cylindrical Panels. Lecture Notes in Mechanical Engineering, 2018, , 199-207.	0.4	1
21	Post-buckling of FSDT of Functionally Graded Material Shell Structures. Lecture Notes in Mechanical Engineering, 2018, , 217-225.	0.4	1
22	Transient Response of Functionally Graded Porous Plate. Lecture Notes in Mechanical Engineering, 2022, , 150-155.	0.4	1
23	Forced Vibration Analysis of Functionally Graded Carbon Nanotubes-Reinforced Composite Plates with Finite Element Strategy. Lecture Notes in Mechanical Engineering, 2020, , 778-785.	0.4	1
24	A Finite Element Procedure for Thermal Buckling Analysis of Functionally Graded Shell Structures. Lecture Notes in Mechanical Engineering, 2020, , 409-416.	0.4	1
25	Buckling Response of Nanocomposite Plate Under Uniaxial In-Plane Loads. Lecture Notes in Mechanical Engineering, 2022, , 313-318.	0.4	1
26	Non-linear Model Reduction Method Applied to Viscoelastically Damped Sandwich Structures. Lecture Notes in Mechanical Engineering, 2015, , 553-562.	0.4	0
27	A Four-Node Shell Element for Geometrically Nonlinear Analysis of Thin FGM Plates and Shells. Lecture Notes in Mechanical Engineering, 2018, , 209-215.	0.4	O
28	Reduction Method Applied to Viscoelastically Damped Finite Element Models. Lecture Notes in Mechanical Engineering, 2013, , 119-126.	0.4	0
29	Frequency Response of FGM Beams. Lecture Notes in Mechanical Engineering, 2022, , 301-305.	0.4	O