List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2261950/publications.pdf Version: 2024-02-01

Ιμανιζανι Υμ

#	Article	IF	CITATIONS
1	A Luminescent Mixed-Lanthanide Metal–Organic Framework Thermometer. Journal of the American Chemical Society, 2012, 134, 3979-3982.	13.7	1,033
2	Dualâ€Emitting MOFâŠ∱Dye Composite for Ratiometric Temperature Sensing. Advanced Materials, 2015, 27, 1420-1425.	21.0	604
3	Confinement of pyridinium hemicyanine dye within an anionic metal-organic framework for two-photon-pumped lasing. Nature Communications, 2013, 4, 2719.	12.8	381
4	3D Printed Photoresponsive Devices Based on Shape Memory Composites. Advanced Materials, 2017, 29, 1701627.	21.0	370
5	Auxetic Mechanical Metamaterials to Enhance Sensitivity of Stretchable Strain Sensors. Advanced Materials, 2018, 30, e1706589.	21.0	349
6	Luminescent Metal–Organic Framework Films As Highly Sensitive and Fast-Response Oxygen Sensors. Journal of the American Chemical Society, 2014, 136, 5527-5530.	13.7	319
7	Thicknessâ€Gradient Films for High Gauge Factor Stretchable Strain Sensors. Advanced Materials, 2015, 27, 6230-6237.	21.0	300
8	Gesture recognition using a bioinspired learning architecture that integrates visual data with somatosensory data from stretchable sensors. Nature Electronics, 2020, 3, 563-570.	26.0	298
9	Secondâ€Order Nonlinear Optical Activity Induced by Ordered Dipolar Chromophores Confined in the Pores of an Anionic Metal–Organic Framework. Angewandte Chemie - International Edition, 2012, 51, 10542-10545.	13.8	279
10	Suspended Wavy Graphene Microribbons for Highly Stretchable Microsupercapacitors. Advanced Materials, 2015, 27, 5559-5566.	21.0	268
11	Dye Encapsulated Metalâ€Organic Framework for Warmâ€White LED with High Colorâ€Rendering Index. Advanced Functional Materials, 2015, 25, 4796-4802.	14.9	260
12	A porous Zr-cluster-based cationic metal–organic framework for highly efficient Cr ₂ O ₇ ^{2â^`} removal from water. Chemical Communications, 2015, 51, 14732-14734.	4.1	234
13	Soft Thermal Sensor with Mechanical Adaptability. Advanced Materials, 2016, 28, 9175-9181.	21.0	201
14	Broadband Extrinsic Selfâ€Trapped Exciton Emission in Snâ€Doped 2D Leadâ€Halide Perovskites. Advanced Materials, 2019, 31, e1806385.	21.0	198
15	A ratiometric and colorimetric luminescent thermometer over a wide temperature range based on a lanthanide coordination polymer. Chemical Communications, 2014, 50, 719-721.	4.1	192
16	Two-Photon Responsive Metal–Organic Framework. Journal of the American Chemical Society, 2015, 137, 4026-4029.	13.7	185
17	A Low Cytotoxic Cationic Metal–Organic Framework Carrier for Controllable Drug Release. Journal of Medicinal Chemistry, 2014, 57, 5679-5685.	6.4	177
18	Skinâ€Inspired Haptic Memory Arrays with an Electrically Reconfigurable Architecture. Advanced Materials, 2016, 28, 1559-1566.	21.0	173

#	Article	IF	CITATIONS
19	Highâ€Adhesion Stretchable Electrodes Based on Nanopile Interlocking. Advanced Materials, 2017, 29, 1603382.	21.0	168
20	Polarized three-photon-pumped laser in a single MOF microcrystal. Nature Communications, 2016, 7, 11087.	12.8	165
21	A microporous metal–organic framework with both open metal and Lewis basic pyridyl sites for high C2H2 and CH4 storage at room temperature. Chemical Communications, 2013, 49, 6719.	4.1	158
22	A porous metal–organic framework with –COOH groups for highly efficient pollutant removal. Chemical Communications, 2014, 50, 14455-14458.	4.1	154
23	A luminescent nanoscale metal–organic framework with controllable morphologies for spore detection. Chemical Communications, 2012, 48, 7377.	4.1	146
24	Highly Stretchable, Compliant, Polymeric Microelectrode Arrays for In Vivo Electrophysiological Interfacing. Advanced Materials, 2017, 29, 1702800.	21.0	144
25	Design and Synthesis of an MOF Thermometer with High Sensitivity in the Physiological Temperature Range. Inorganic Chemistry, 2015, 54, 11193-11199.	4.0	130
26	An Artificial Somatic Reflex Arc. Advanced Materials, 2020, 32, e1905399.	21.0	126
27	Confinement of Perovskiteâ€QDs within a Single MOF Crystal for Significantly Enhanced Multiphoton Excited Luminescence. Advanced Materials, 2019, 31, e1806897.	21.0	124
28	Mediating Shortâ€Term Plasticity in an Artificial Memristive Synapse by the Orientation of Silica Mesopores. Advanced Materials, 2018, 30, e1706395.	21.0	100
29	A Doubly Interpenetrated Metal–Organic Framework with Open Metal Sites and Suitable Pore Sizes for Highly Selective Separation of Small Hydrocarbons at Room Temperature. Crystal Growth and Design, 2013, 13, 2094-2097.	3.0	96
30	Highly Stable and Stretchable Conductive Films through Thermalâ€Radiationâ€Assisted Metal Encapsulation. Advanced Materials, 2019, 31, e1901360.	21.0	96
31	Selfâ€Protection of Electrochemical Storage Devices via a Thermal Reversible Sol–Gel Transition. Advanced Materials, 2015, 27, 5593-5598.	21.0	94
32	3D‣tructured Stretchable Strain Sensors for Outâ€ofâ€Plane Force Detection. Advanced Materials, 2018, 30, e1707285.	21.0	86
33	A new fluorescent and colorimetric probe for trace hydrazine with a wide detection range in aqueous solution. Dyes and Pigments, 2013, 99, 966-971.	3.7	83
34	Alcoholâ€Mediated Resistance‣witching Behavior in Metal–Organic Frameworkâ€Based Electronic Devices. Angewandte Chemie - International Edition, 2016, 55, 8884-8888.	13.8	72
35	Enhancing the Matrix Addressing of Flexible Sensory Arrays by a Highly Nonlinear Threshold Switch. Advanced Materials, 2018, 30, e1802516.	21.0	70
36	Stretchable Motion Memory Devices Based on Mechanical Hybrid Materials. Advanced Materials, 2017, 29, 1701780.	21.0	68

#	Article	IF	CITATIONS
37	Low Cytotoxic Metal–Organic Frameworks as Temperatureâ€Responsive Drug Carriers. ChemPlusChem, 2016, 81, 804-810.	2.8	67
38	A microporous metal–organic framework of a rare sty topology for high CH4 storage at room temperature. Chemical Communications, 2013, 49, 2043.	4.1	61
39	A new fluorescent probe for distinguishing Zn2+ and Cd2+ with high sensitivity and selectivity. Dalton Transactions, 2013, 42, 11465.	3.3	58
40	Artificial Neural Pathway Based on a Memristor Synapse for Optically Mediated Motion Learning. ACS Nano, 2022, 16, 9691-9700.	14.6	47
41	Encapsulation of dyes in metal–organic frameworks and their tunable nonlinear optical properties. Dalton Transactions, 2016, 45, 4218-4223.	3.3	45
42	Tactile Chemomechanical Transduction Based on an Elastic Microstructured Array to Enhance the Sensitivity of Portable Biosensors. Advanced Materials, 2019, 31, e1803883.	21.0	45
43	Two Chiral Nonlinear Optical Coordination Networks Based on Interwoven Two-Dimensional Square Grids of Double Helices. Crystal Growth and Design, 2010, 10, 5291-5296.	3.0	44
44	An indanone-based alkoxysilane dye with second order nonlinear optical properties. Dyes and Pigments, 2009, 81, 53-57.	3.7	41
45	Solvent effect on two-photon absorption (TPA) of three novel dyes with large TPA cross-section and red emission. Dyes and Pigments, 2013, 97, 58-64.	3.7	41
46	Three-dimensional copper (II) metal–organic framework with open metal sites and anthracene nucleus for highly selective C2H2/CH4 and C2H2/CO2 gas separation at room temperature. Microporous and Mesoporous Materials, 2013, 181, 99-104.	4.4	40
47	Enhancement of nonlinear optical activity in new six-branched dendritic dipolar chromophore. Journal of Materials Chemistry, 2011, 21, 3197.	6.7	38
48	Preparation and thiols sensing of luminescent metal–organic framework films functionalized with lanthanide ions. Microporous and Mesoporous Materials, 2013, 179, 198-204.	4.4	38
49	A new fluorescent probe for Zn ²⁺ with red emission and its application in bioimaging. Dalton Transactions, 2014, 43, 8048-8053.	3.3	37
50	A new microporous metal–organic framework with open metal sites and exposed carboxylic acid groups for selective separation of CO ₂ /CH ₄ and C ₂ H ₂ /CH ₄ . RSC Advances, 2014, 4, 36419.	3.6	37
51	A fluorescent pH chemosensor for strongly acidic conditions based on the intramolecular charge transfer (ICT) effect. RSC Advances, 2013, 3, 4872.	3.6	35
52	Correlating the Surface Basicity of Metal Oxides with Photocatalytic Hydroxylation of Boronic Acids to Alcohols. Angewandte Chemie - International Edition, 2018, 57, 9780-9784.	13.8	33
53	A series of multifunctional coordination polymers based on terpyridine and zinc halide: second-harmonic generation and two-photon absorption properties and intracellular imaging. Journal of Materials Chemistry B, 2017, 5, 5458-5463.	5.8	31
54	A novel 2,6-dicarbonylpyridine-based fluorescent chemosensor for Co2+ with high selectivity and sensitivity. Analyst, The, 2011, 136, 5283.	3.5	30

#	Article	IF	CITATIONS
55	A new highly selective and sensitive fluorescent probe for Zn2+ and its application in cell-imaging. Dyes and Pigments, 2014, 107, 45-50.	3.7	27
56	Periodically Aligned Dye Molecules Integrated in a Single MOF Microcrystal Exhibit Singleâ€Mode Linearly Polarized Lasing. Advanced Optical Materials, 2017, 5, 1601040.	7.3	27
57	Molecular Design and Synthesis of Hetero-trichromophore for Enhanced Nonlinear Optical Activity. Macromolecules, 2009, 42, 2198-2203.	4.8	25
58	Six-branched chromophores with isolation groups: synthesis and enhanced optical nonlinearity. Journal of Materials Chemistry, 2012, 22, 9202.	6.7	25
59	Enhanced Optical Nonlinearity and Improved Transparency of Inorganicâ^'Organic Hybrid Materials Containing Benzimidazole Chromophores. Journal of Physical Chemistry B, 2009, 113, 14877-14883.	2.6	23
60	Assembly and tunable luminescence of lanthanide-organic frameworks constructed from 4-(3,5-dicarboxyphenyl)pyridine-2,6-dicarboxylate ligand. Journal of Alloys and Compounds, 2013, 551, 616-620.	5.5	23
61	A NbO type microporous metal–organic framework constructed from a naphthalene derived ligand for CH ₄ and C ₂ H ₂ storage at room temperature. RSC Advances, 2014, 4, 49457-49461.	3.6	23
62	Preparation and Gas Separation Properties of Metalâ€Organic Framework Membranes. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 792-796.	1.2	22
63	Syntheses, structures and tunable luminescence of lanthanide metal-organic frameworks based on azole-containing carboxylic acid ligand. Journal of Solid State Chemistry, 2015, 230, 287-292.	2.9	21
64	A Noninterpenetrated Metal–Organic Framework Built from an Enlarged Tetracarboxylic Acid for Small Hydrocarbon Separation. Crystal Growth and Design, 2015, 15, 4071-4074.	3.0	21
65	Alcoholâ€Mediated Resistanceâ€&witching Behavior in Metal–Organic Frameworkâ€Based Electronic Devices. Angewandte Chemie, 2016, 128, 9030-9034.	2.0	19
66	A new anionic metal-organic framework for highly efficient removal of cationic pollutant in water. Materials Letters, 2016, 185, 177-180.	2.6	17
67	Synthesis and luminescence behavior of inorganic–organic hybrid materials covalently bound with pyran-containing dyes. Journal of Sol-Gel Science and Technology, 2009, 52, 362-369.	2.4	16
68	CoFe ₂ O ₄ Nanocrystals Mediated Crystallization Strategy for Magnetic Functioned ZSMâ€5 Catalysts. Advanced Functional Materials, 2018, 28, 1802088.	14.9	15
69	A 3-phenoxypropane-1, 2-diol based bichromophore for enhanced nonlinear optical properties. Dyes and Pigments, 2010, 87, 204-208.	3.7	13
70	Facile preparation of continuous indium metal-organic framework thin films on indium tin oxide glass. Thin Solid Films, 2013, 544, 296-300.	1.8	13
71	Dual-band simultaneous lasing in MOFs single crystals with Fabry-Perot microcavities. Science China Chemistry, 2019, 62, 987-993.	8.2	13
72	Synthesis of phenyltetraene chromophores-based hybrid materials for large nonlinear optical activity. Dyes and Pigments, 2013, 98, 377-383.	3.7	12

#	Article	IF	CITATIONS
73	Preparation of polymer films containing multi-branched chromophores for enhanced nonlinear optical activity. Dyes and Pigments, 2017, 136, 791-797.	3.7	12
74	Large nonlinear optical activity from hybrid inorganic–organic films with fluorinated benzene as isolation group. Thin Solid Films, 2013, 544, 407-411.	1.8	11
75	Synthesis and NLO properties of hybrid inorganic–organic films containing thiophene ring. Thin Solid Films, 2009, 517, 5075-5078.	1.8	10
76	Low Cytotoxic Metal-Organic Frameworks as Temperature-Responsive Drug Carriers. ChemPlusChem, 2016, 81, 668-668.	2.8	10
77	Correlating the Surface Basicity of Metal Oxides with Photocatalytic Hydroxylation of Boronic Acids to Alcohols. Angewandte Chemie, 2018, 130, 9928-9932.	2.0	8
78	Preparation and electro-optic properties of hybrid sol–gel films containing imidazole chromophore. Materials Letters, 2009, 63, 2594-2596.	2.6	7
79	Strainâ€Enabled Phase Transition of Periodic Metasurfaces. Advanced Materials, 2022, 34, e2102560.	21.0	7
80	Design and synthesis of bichromophores for nonlinear optical applications in polymer films. Reactive and Functional Polymers, 2011, 71, 496-501.	4.1	6
81	Synthesis, Structures and Luminescent Properties of Two Coordination Polymers Based on 5â€(4â€Carboxyphenyl)â€2, 6â€PyrÂidinedicarboxylic Acid. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 430-434.	1.2	5
82	Preparation and nonlinear optical properties of hybrid films containing dicyanomethylenepyran-based chromophores. Thin Solid Films, 2011, 519, 5061-5065.	1.8	4
83	Mechanically tunable organic vertical-cavity surface emitting lasers (VCSELs) for highly sensitive stress probing in dual-modes. Optics Express, 2015, 23, 4385.	3.4	4
84	Memory Arrays: Skin-Inspired Haptic Memory Arrays with an Electrically Reconfigurable Architecture (Adv. Mater. 8/2016). Advanced Materials, 2016, 28, 1526-1526.	21.0	3
85	White Light: Dye Encapsulated Metalâ€Organic Framework for Warmâ€White LED with High Colorâ€Rendering Index (Adv. Funct. Mater. 30/2015). Advanced Functional Materials, 2015, 25, 4795-4795.	14.9	2
86	Inorganic–organic hybrid nonlinear optical films containing thiophene-vinyl conjugated chromophore. Thin Solid Films, 2011, 519, 5056-5060.	1.8	1
87	Hybrid inorganic-organic films with Benzaldehyde-based chromophore for electro-optic device. , 2010, , .		0