List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2261858/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Palladiumâ€Catalyzed Crossâ€Dehydrogenative Functionalization of C(sp ²)H Bonds. Chemistry - an Asian Journal, 2014, 9, 26-47.	3.3	249
2	Asymmetric Hydrogenation of Quinoxalines with Diphosphinite Ligands: A Practical Synthesis of Enantioenriched, Substituted Tetrahydroquinoxalines. Angewandte Chemie - International Edition, 2009, 48, 9135-9138.	13.8	155
3	Asymmetric phosphoric acid–catalyzed four-component Ugi reaction. Science, 2018, 361, .	12.6	150
4	Advances and Applications in Organocatalytic Asymmetric azaâ€Michael Addition. ChemCatChem, 2012, 4, 917-925.	3.7	148
5	Rational design, enantioselective synthesis and catalytic applications of axially chiral EBINOLs. Nature Catalysis, 2019, 2, 504-513.	34.4	145
6	Asymmetric construction of atropisomeric biaryls via a redox neutral cross-coupling strategy. Nature Catalysis, 2019, 2, 314-323.	34.4	112
7	Phosphoric acid-catalyzed atroposelective construction of axially chiral arylpyrroles. Nature Communications, 2019, 10, 566.	12.8	89
8	Rhodium-Catalyzed Asymmetric Addition of Arylboronic Acids to β-Phthaliminoacrylate Esters toward the Synthesis of β-Amino Acids. Journal of the American Chemical Society, 2010, 132, 464-465.	13.7	81
9	Asymmetric Hydrophosphination of Heterobicyclic Alkenes: Facile Access to Phosphine Ligands for Asymmetric Catalysis. ACS Catalysis, 2019, 9, 1457-1463.	11.2	77
10	Palladium-catalyzed asymmetric hydrophosphorylation of alkynes: facile access to <i>P</i> -stereogenic phosphinates. Chemical Science, 2020, 11, 7451-7455.	7.4	76
11	Enantioselective Palladiumâ€Catalyzed Hydrophosphinylation of Allenes with Phosphine Oxides: Access to Chiral Allylic Phosphine Oxides. Angewandte Chemie - International Edition, 2021, 60, 27288-27292.	13.8	58
12	Cp*Co ^{III} -Catalyzed C–H Alkenylation/Annulation to Afford Spiro Indenyl Benzosultam. Journal of Organic Chemistry, 2016, 81, 6093-6099.	3.2	56
13	Unprecedented Effects of Additives and Ligandâ€ŧoâ€Metal Ratio on the Enantiofacial Selection of Copperâ€Catalyzed Alkynylation of αâ€Imino Ester with Arylacetylenes. Advanced Synthesis and Catalysis, 2007, 349, 2375-2379.	4.3	55
14	1,4-Diazabicyclo[2.2.2]octane-Promoted Aminotrifluoromethylthiolation of α,β-Unsaturated Carbonyl Compounds: <i>N-</i> Trifluoromethylthio-4-nitrophthalimide Acts as Both the Nitrogen and SCF ₃ Sources. Organic Letters, 2015, 17, 6090-6093.	4.6	54
15	Recent progress on asymmetric organocatalytic construction of chiral cyclohexenone skeletons. Organic and Biomolecular Chemistry, 2014, 12, 2499-2513.	2.8	49
16	Iridium-catalyzed asymmetric hydroalkynylation reactions of oxabenzonorbornadienes. Organic and Biomolecular Chemistry, 2013, 11, 814-820.	2.8	48
17	Cobalt-Catalyzed Direct C–H Thiolation of Aromatic Amides with Disulfides: Application to the Synthesis of Quetiapine. Organic Letters, 2018, 20, 6490-6493.	4.6	44
18	A highly enantioselective access to chiral chromanones and thiochromanones via copper-catalyzed asymmetric conjugated reduction of chromones and thiochromones. Chemical Communications, 2017, 53, 6844-6847.	4.1	42

#	Article	IF	CITATIONS
19	Domino Reaction of 3-(2-Formylphenoxy)propenoates and Amines:Â A Novel Synthesis of 1,4-Dihydropyridines from Salicaldehydes, Ethyl Propiolate, and Amines. Journal of Organic Chemistry, 2007, 72, 7779-7782.	3.2	41
20	Catalytic Asymmetric Syntheses of 2â€Aryl Chromenes. Asian Journal of Organic Chemistry, 2019, 8, 1742-1765.	2.7	40
21	Kinetic Resolution and Dynamic Kinetic Resolution of Chromene by Rhodium atalyzed Asymmetric Hydroarylation. Angewandte Chemie - International Edition, 2019, 58, 5343-5347.	13.8	40
22	Rhodium/Chiral Dieneâ€Catalyzed Asymmetric 1,4â€Addition of Arylboronic Acids to Chromones: A Highly Enantioselective Pathway for Accessing Chiral Flavanones. Chemistry - an Asian Journal, 2015, 10, 540-543.	3.3	39
23	Palladium/Copper Complexes Co atalyzed Highly Enantioselective Ring Opening Reaction of Azabenzonorbornadienes with Terminal Alkynes. Advanced Synthesis and Catalysis, 2013, 355, 2827-2832.	4.3	38
24	Palladium/Zinc Coâ€Catalyzed <i>syn</i> ‣tereoselectively Asymmetric Ringâ€Opening Reaction of Oxabenzonorbornadienes with Phenols. Chemistry - A European Journal, 2015, 21, 9003-9007.	3.3	38
25	Rh-Catalyzed Conjugate Addition of Arylzinc Chlorides to Thiochromones: A Highly Enantioselective Pathway for Accessing Chiral Thioflavanones. Organic Letters, 2016, 18, 4986-4989.	4.6	38
26	Palladium-catalyzed direct arylation of polyfluoroarenes with aryl tosylates and mesylates. RSC Advances, 2012, 2, 9179.	3.6	37
27	Organocatalytic asymmetric aza-Michael addition of pyrazole to chalcone. Tetrahedron: Asymmetry, 2014, 25, 98-101.	1.8	36
28	Palladium atalyzed Asymmetric Ring Opening Reaction of Azabenzonorbornadienes with Aromatic Amines. Advanced Synthesis and Catalysis, 2015, 357, 3121-3125.	4.3	36
29	Catalyst-free aza-Michael addition of azole to β,γ-unsaturated-α-keto ester: an efficient access to C–N bond formation. Tetrahedron Letters, 2012, 53, 2887-2889.	1.4	35
30	Catalytic asymmetric trifluoromethylthiolation of carbonyl compounds <i>via</i> a diastereo and enantioselective Cu-catalyzed tandem reaction. Chemical Communications, 2018, 54, 4581-4584.	4.1	33
31	Iridium-Catalyzed Asymmetric Addition of Thiophenols to Oxabenzonorbornadienes. Organic Letters, 2016, 18, 5276-5279.	4.6	30
32	lridium/copper-cocatalyzed asymmetric ring opening reaction of azabenzonorbornadienes with amines. Organic and Biomolecular Chemistry, 2015, 13, 8425-8428.	2.8	28
33	Cobalt-catalyzed cross-dehydrogenative coupling of imidazo[1,2- <i>a</i>]pyridines with isochroman using molecular oxygen as the oxidant. Organic Chemistry Frontiers, 2018, 5, 577-581.	4.5	25
34	Rhodium-Catalyzed Enantioselective Hydroselenation of Heterobicyclic Alkenes. Organic Letters, 2020, 22, 2781-2785.	4.6	25
35	Enantioselective synthesis of indole derivatives by Rh/Pd relay catalysis and their anti-inflammatory evaluation. Chemical Communications, 2020, 56, 7573-7576.	4.1	25
36	lridium/NMDPP Catalyzed Asymmetric Ringâ€Opening Reaction of Oxabenzonorbornadienes with Phenolic or Naphtholic Nucleophiles. Asian Journal of Organic Chemistry, 2013, 2, 494-497.	2.7	22

#	Article	IF	CITATIONS
37	Recent Progress on the Asymmetric Synthesis of Chiral Flavanones. Synlett, 2016, 27, 656-663.	1.8	21
38	Asymmetric Synthesis of Chiral Chromanes by Copperâ€Catalyzed Hydroamination of 2 <i>H</i> â€Chromenes. ChemCatChem, 2020, 12, 3202-3206.	3.7	18
39	Asymmetric Access of γ-Amino Acids and γ-Amino Phosphonic Acid Derivatives via Copper-Catalyzed Enantioselective and Regioselective Hydroamination. CCS Chemistry, 2022, 4, 1901-1911.	7.8	18
40	Cu(I)-Catalyzed Enantioselective Alkynylation of Thiochromones. Organic Letters, 2020, 22, 1155-1159.	4.6	17
41	Catalyst-Free Efficient Aza-Michael Addition of Azoles to Nitroalkenes. Synlett, 2012, 23, 788-790.	1.8	16
42	Copper(II) triflate-catalyzed highly efficient synthesis of N-substituted 1,4-dihydropyridine derivatives via three-component cyclizations of alkynes, amines, and α,β-unsaturated aldehydes. Tetrahedron Letters, 2016, 57, 4500-4504.	1.4	16
43	Bi(OTf)3-catalyzed addition of isocyanides to 2H-chromene acetals: an efficient pathway for accessing 2-carboxamide-2H-chromenes. Organic and Biomolecular Chemistry, 2016, 14, 8088-8091.	2.8	15
44	Cu-Catalyzed Conjugate Addition of Grignard Reagents to Thiochromones: An Enantioselective Pathway for Accessing 2-Alkylthiochromanones. Synlett, 2018, 29, 2071-2075.	1.8	15
45	Asymmetric synthesis of flavanols via Cu-catalyzed kinetic resolution of chromenes and their anti-inflammatory activity. Science Advances, 2022, 8, .	10.3	15
46	Copper(I)â€Catalyzed Asymmetric Addition of Terminal Alkynes to βâ€Imino Esters: An Efficient and Direct Method in the Synthesis of Chiral β ³ â€Alkynyl β ^{2,2} â€Dimethyl Amino Acid Derivatives. Advanced Synthesis and Catalysis, 2009, 351, 1250-1254.	4.3	14
47	Enantioselective Palladiumâ€Catalyzed Hydrophosphinylation of Allenes with Phosphine Oxides: Facile Access to Chiral Allylic Phosphine Oxides. Angewandte Chemie, 0, , .	2.0	14
48	Highly enantioselective access to chiral chromanes and thiochromanes <i>via</i> Cu-catalyzed hydroamination with anthranils. Organic Chemistry Frontiers, 2021, 8, 1563-1568.	4.5	13
49	Atomâ€Economical and Stereoselective Difunctionalization of Electronâ€Withdrawing Alkynes with <i>N</i> â€Trifluoromethylthiophthalimide. Asian Journal of Organic Chemistry, 2018, 7, 1784-1787.	2.7	11
50	Kinetic Resolution of <scp>2â€6ubstituted</scp> 1, <scp>2â€Dihydroquinolines</scp> by <scp>Rhodiumâ€Catalyzed</scp> Asymmetric Hydroarylation ^{â€} . Chinese Journal of Chemistry, 2021, 39, 1606-1610.	4.9	11
51	Enantio―and Regioselective Construction of 1,4â€Diamines via Cascade Hydroamination of Methylene Cyclopropanes. Angewandte Chemie - International Edition, 2022, 61, .	13.8	10
52	Kinetic Resolution and Dynamic Kinetic Resolution of Chromene by Rhodium atalyzed Asymmetric Hydroarylation. Angewandte Chemie, 2019, 131, 5397-5401.	2.0	9
53	Sulfideâ€Catalyzed Trifluoromethylthiolationâ€Cyclization of Tryptamine Derivatives. Asian Journal of Organic Chemistry, 2019, 8, 687-690.	2.7	9
54	AlCl3-catalyzed O-alkylative Passerini reaction of isocyanides, cinnamaldehydes and various aliphatic alcohols for accessing α-alkoxy-l²,l³-enamides. Organic Chemistry Frontiers, 2015, 2, 815-818.	4.5	6

#	Article	IF	CITATIONS
55	Catalytic mutual multicomponent reaction: facile access to α-trifluoromethylthiolated ketones. Chemical Communications, 2020, 56, 10552-10555.	4.1	6
56	Metal-free access to 3-allyl-2-alkoxychromanones <i>via</i> phosphine-catalyzed alkoxy allylation of chromones with MBH carbonates and alcohols. Organic and Biomolecular Chemistry, 2021, 19, 2663-2667.	2.8	4
57	Recent Advances on Transition-Metal-Catalyzed Asymmetric C–H Arylation Reactions. Synthesis, 2022, 54, 4734-4752.	2.3	4
58	BF ₃ ·Et ₂ O Promoted Sulfuration of Steroidal Sapogenins. Chinese Journal of Chemistry, 2015, 33, 632-636.	4.9	3
59	Enantio―and Regioselective Construction of 1,4â€diamines via Cascade Hydroamination of Methylene Cyclopropanes. Angewandte Chemie, 0, , .	2.0	0