
Wenge Ni-meister

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2261756/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The fourth phase of the radiative transfer model intercomparison (RAMI) exercise: Actual canopy scenarios and conformity testing. Remote Sensing of Environment, 2015, 169, 418-437.	11.0	170
2	Measuring forest structure and biomass in New England forest stands using Echidna ground-based lidar. Remote Sensing of Environment, 2011, 115, 2965-2974.	11.0	157
3	Measuring effective leaf area index, foliage profile, and stand height in New England forest stands using a full-waveform ground-based lidar. Remote Sensing of Environment, 2011, 115, 2954-2964.	11.0	131
4	Assessing general relationships between aboveground biomass and vegetation structure parameters for improved carbon estimate from lidar remote sensing. Journal of Geophysical Research, 2010, 115, .	3.3	108
5	Three-dimensional forest reconstruction and structural parameter retrievals using a terrestrial full-waveform lidar instrument (Echidna®). Remote Sensing of Environment, 2013, 135, 36-51.	11.0	105
6	Physically based vertical vegetation structure retrieval from ICESat data: Validation using LVIS in White Mountain National Forest, New Hampshire, USA. Remote Sensing of Environment, 2011, 115, 2776-2785.	11.0	84
7	Assessment of the impacts of surface topography, off-nadir pointing and vegetation structure on vegetation lidar waveforms using an extended geometric optical and radiative transfer model. Remote Sensing of Environment, 2011, 115, 2810-2822.	11.0	67
8	Impact of urbanization on land use and land cover change in Guwahati city, India and its implication on declining groundwater level. Groundwater for Sustainable Development, 2021, 12, 100500.	4.6	65
9	Measuring gap fraction, element clumping index and LAI in Sierra Forest stands using a full-waveform ground-based lidar. Remote Sensing of Environment, 2012, 125, 73-79.	11.0	64
10	A clumped-foliage canopy radiative transfer model for a global dynamic terrestrial ecosystem model. I: Theory. Agricultural and Forest Meteorology, 2010, 150, 881-894.	4.8	60
11	Machine Learning Techniques for Tree Species Classification Using Co-Registered LiDAR and Hyperspectral Data. Remote Sensing, 2019, 11, 819.	4.0	52
12	A simulation analysis of the detectability of understory burns in miombo woodlands. Remote Sensing of Environment, 2004, 93, 296-310.	11.0	41
13	Recent Advances On Soil Moisture Data Assimilation. Physical Geography, 2008, 29, 19-37.	1.4	40
14	A clumped-foliage canopy radiative transfer model for a Global Dynamic Terrestrial Ecosystem Model II: Comparison to measurements. Agricultural and Forest Meteorology, 2010, 150, 895-907.	4.8	35
15	Evaluation of TRMM Multisatellite Precipitation Analysis (TMPA) Products and Their Potential Hydrological Application at an Arid and Semiarid Basin in China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7, 3915-3930.	4.9	33
16	Soil moisture initialization for climate prediction: Assimilation of scanning multifrequency microwave radiometer soil moisture data into a land surface model. Journal of Geophysical Research, 2006, 111, .	3.3	32
17	A comparison of foliage profiles in the Sierra National Forest obtained with a full-waveform under-canopy EVI lidar system with the foliage profiles obtained with an airborne full-waveform LVIS lidar system. Remote Sensing of Environment, 2013, 136, 330-341.	11.0	30
18	Soil moisture initialization for climate prediction: Characterization of model and observation errors. Journal of Geophysical Research, 2005, 110, .	3.3	20

Wenge Ni-meister

#	Article	IF	CITATIONS
19	Modeling the hemispherical scanning, below-canopy lidar and vegetation structure characteristics with a geometric-optical and radiative-transfer model. Canadian Journal of Remote Sensing, 2008, 34, S385-S397.	2.4	20
20	Allometric Scaling and Resource Limitations Model of Tree Heights: Part 1. Model Optimization and Testing over Continental USA. Remote Sensing, 2013, 5, 284-306.	4.0	18
21	Validating modeled lidar waveforms in forest canopies with airborne laser scanning data. Remote Sensing of Environment, 2018, 204, 229-243.	11.0	18
22	Impacts of vegetation and cold season processes on soil moisture and climate relationships over Eurasia. Journal of Geophysical Research, 2007, 112, .	3.3	15
23	Allometric Scaling and Resource Limitations Model of Tree Heights: Part 2. Site Based Testing of the Model. Remote Sensing, 2013, 5, 202-223.	4.0	15
24	Mapping wetlands in the Hudson Highlands ecoregion with ALOS PALSAR: an effort to identify potential swamp forest habitat for golden-winged warblers. Wetlands Ecology and Management, 2015, 23, 95-112.	1.5	15
25	Forest Canopy Height and Gaps from Multiangular BRDF, Assessed with Airborne LiDAR Data. Remote Sensing, 2019, 11, 2566.	4.0	13
26	Recirculation over complex terrain. Journal of Geophysical Research D: Atmospheres, 2017, 122, 6637-6651.	3.3	11
27	The Potential of Forest Biomass Inversion Based on Vegetation Indices Using Multi-Angle CHRIS/PROBA Data. Remote Sensing, 2016, 8, 891.	4.0	10
28	Remote Sensing of Forest Biomass. Springer Remote Sensing/photogrammetry, 2014, , 63-98.	0.4	8
29	Direct use of large-footprint lidar waveforms to estimate aboveground biomass. Remote Sensing of Environment, 2022, 280, 113147.	11.0	6
30	NASAâ€Modified Precipitation Products to Improve USEPA Nonpoint Source Water Quality Modeling for the Chesapeake Bay. Journal of Environmental Quality, 2010, 39, 1388-1401.	2.0	5
31	A Multi-Scale Approach to Mapping Canopy Height. Photogrammetric Engineering and Remote Sensing, 2013, 79, 185-194.	0.6	5
32	The Interplay between Canopy Structure and Topography and Its Impacts on Seasonal Variations in Surface Reflectance Patterns in the Boreal Region of Alaska—Implications for Surface Radiation Budget. Remote Sensing, 2021, 13, 3108.	4.0	2
33	Fine-Scale Urban Heat Patterns in New York City Measured by ASTER Satellite—The Role of Complex Spatial Structures. Remote Sensing, 2021, 13, 3797.	4.0	2
34	Fusion of LiDAR and radar for vegetation structure and biomass retrieval. , 2016, , .		1
35	The Potential of Forest Biomass Inversion Based on Canopy-Independent Structure Metrics Tested by Airborne LiDAR Data. , 2019, , .		1
36	3D vegetation structure extraction from lidar remote sensing. , 2005, 5887, 271.		0

3D vegetation structure extraction from lidar remote sensing. , 2005, 5887, 271. 36

#	Article	IF	CITATIONS
37	Analysis of diurnal boundary layer development in boreal forests: measurements and simulations. Journal of Plant Ecology, 2012, 5, 191-205.	2.3	0
38	Soil Moisture Data Assimilation for State Initialization of Seasonal Climate Prediction. , 2013, , 379-404.		0
39	8. Downscaling on Demand: Examples in Forest Canopy Mapping. , 2016, , 229-246.		0
40	Allometric Relationships Between Above-Ground Biomass and Lidar Full Waveform Measurements - Potential Applications for Global Ecosystem Dynamics Investigation (GEDI) Mission. , 2020, , .		0