
Rabah Hamzaoui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2261357/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Physico-chemical and mechanical properties of fly ash based-geopolymer pastes produced from pre-geopolymer powders obtained by mechanosynthesis. Construction and Building Materials, 2021, 288, 123135.	3.2	15
2	Treatment and Recovery of Clay Soils Using Geopolymerization Method. International Journal of Geomechanics, 2021, 21, 04021206.	1.3	3
3	Durability of Moroccan fly ash-based geopolymer binder. Materials Letters, 2021, 304, 130673.	1.3	4
4	Formulation of Modified Cement Mortars Using Optimal Combination of Fly Ashes, Shiv, and Hemp Fibers. Journal of Materials in Civil Engineering, 2020, 32, 04019354.	1.3	16
5	Equivalent Cement Clinker Obtained by Indirect Mechanosynthesis Process. Materials, 2020, 13, 5045.	1.3	8
6	Introduction of milled kaolinite obtained by mechanosynthesis to cement mixture for the production of mortar: Study of mechanical performance of modified mortar. Powder Technology, 2019, 355, 340-348.	2.1	16
7	PCA effect on structure of fly ashes and slag obtained by mechanosynthesis. Applications: Mechanical performance of substituted paste CEMI + 50% slag /or fly ashes. Construction and Building Materials, 2019, 203, 120-133.	3.2	17
8	Geotechnical and mineralogical properties of treated clayey soil with dune sand. Journal of African Earth Sciences, 2019, 152, 140-150.	0.9	15
9	Chromium stabilization and trapping in the cement matrix of recycled concrete aggregates. Construction and Building Materials, 2018, 191, 667-678.	3.2	4
10	Efficiency of high energy over conventional milling of granulated blast furnace slag powder to improve mechanical performance of slag cement paste. Powder Technology, 2017, 308, 37-46.	2.1	64
11	Date palm spikelet in mortar: Testing and modelling to reveal the mechanical performance. Construction and Building Materials, 2016, 124, 228-236.	3.2	15
12	The sequel of modified fly ashes using high energy ball milling on mechanical performance of substituted past cement. Materials and Design, 2016, 90, 29-37.	3.3	55
13	Microstructure and mechanical performance of modified hemp fibre and shiv mortars: Discovering the optimal formulation. Materials and Design, 2015, 84, 359-371.	3.3	38
14	Three-dimensional simulation of 304L steel TIG welding process: Contribution of the thermal flux. Applied Thermal Engineering, 2015, 89, 822-832.	3.0	36
15	Structural and thermal behavior of proclay kaolinite using high energy ball milling process. Powder Technology, 2015, 271, 228-237.	2.1	72
16	Microstructure and mechanical performance of modified mortar using hemp fibres and carbon nanotubes. Materials & Design, 2014, 56, 60-68.	5.1	72
17	Magnetic properties of nanocrystalline Fe–10%Ni alloy obtained by planetary ball mills. Journal of Alloys and Compounds, 2013, 573, 157-162.	2.8	22
18	Characterization of the viscoelastic behavior of the pure bitumen grades 10/20 and 35/50 with macroindentation and finite element computation. Journal of Applied Polymer Science, 2013, 130, 3440-3450.	1.3	2

Rabah Hamzaoui

#	Article	IF	CITATIONS
19	Penetration testing and thermal behavior of bitumen 35/50 and modified bitumen 13/40. EPJ Applied Physics, 2012, 59, 10201.	0.3	4
20	First principles investigation of the substitutional doping of Mn in Mg2Ni phase and the electronic structure of Mg3MnNi2 phase. Journal of Alloys and Compounds, 2011, 509, S328-S333.	2.8	22
21	Deposition and characterization of cold sprayed nanocrystalline NiTi. Powder Technology, 2011, 210, 181-188.	2.1	33
22	Multiobjective Optimization on Urban Flooding Using RSM and GA. Advanced Materials Research, 2011, 255-260, 1627-1631.	0.3	1
23	Optimal Modeling Study of Flooding Phenomenon in Urban Area (Dam break case). International Journal for Simulation and Multidisciplinary Design Optimization, 2010, 4, 149-158.	0.6	0
24	Structural characterization and electrochemical hydrogen storage properties of Mg2Ni1â^'xMnx(xÂ=Â0,) Tj ETQq(2010, 35, 6794-6803.	0 0 0 rgBT 3.8	Overlock 10 37
25	Artificial neural network methodology: Application to predict magnetic properties of nanocrystalline alloys. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2009, 163, 17-21.	1.7	27
26	Analysis of structure and magnetic properties of nanocrystalline milled alloys. Journal of Alloys and Compounds, 2008, 462, 29-37.	2.8	21
27	Microstructure and magnetic properties of FeSiBNbCu-Al cold spray coatings. EPJ Applied Physics, 2008, 43, 79-86.	0.3	8
28	Monte Carlo simulation of uniform corrosion process under potentiostatic conditions. Corrosion Science, 2007, 49, 2880-2904.	3.0	5
29	Structure, magnetic and Mössbauer studies of mechanically alloyed Fe–20wt.% Ni powders. Journal of Alloys and Compounds, 2006, 417, 32-38.	2.8	42
30	Studies of magnetic properties of iron-based coatings produced by a high-velocity oxy-fuel process. Materials Chemistry and Physics, 2005, 92, 419-423.	2.0	13
31	X-ray diffraction and Mössbauer studies of mechanically alloyed Fe–Ni nanostructured powders. Journal of Magnetism and Magnetic Materials, 2005, 294, e145-e149.	1.0	14
32	Neural computation to predict magnetic properties of mechanically alloyed Fe–10%Ni and Fe–20%Ni nanocrystalline. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 119, 164-170.	1.7	5
33	Friction mode and shock mode effect on magnetic properties of mechanically alloyed Fe-based nanocrystalline materials. Journal of Materials Science, 2004, 39, 5139-5142.	1.7	10
34	Milling conditions effect on structure and magnetic properties of mechanically alloyed Fe–10% Ni and Fe–20% Ni alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 381, 363-371.	2.6	65
35	Structure and magnetic properties of nanocrystalline mechanically alloyed Fe–10% Ni and Fe–20% Ni. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 360, 299-305.	2.6	85
36	Structure and magnetic properties of nanocrystalline Co–Ni and Co–Fe mechanically alloyed. Materials Letters, 2003, 57, 4165-4169.	1.3	48

КАВАН НАМZAOUI

#	Article	IF	CITATIONS
37	Optimal Carbon Nanotubes Concentration Incorporated in Mortar and Concrete. Advanced Materials Research, 0, 587, 107-110.	0.3	24
38	Leaching and Mechanical Behaviour of Solidified/Stabilized Nickel Contaminated Soil with Cement and Geosta. International Journal of Environmental Pollution and Remediation, 0, , .	0.0	4
39	Using the Fast Multi-Objective Genetic Algorithm to Improve the Urban Flood Modeling. International Journal of Engineering and Technology, 0, , 341-344.	0.1	1
40	Using a Laser Scanning to Construct a 3D Numerical Model to Study the Flooding Risk in Urban Area. International Journal of Engineering and Technology, 0, , 416-419.	0.1	1
41	Valorization of Vegetal Fibers in Anti-Fissuration Screed Mortar Formulation. , 0, , .		0