
Shengyuan Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2261246/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bi-Level Coordinated Power System Restoration Model Considering the Support of Multiple Flexible Resources. IEEE Transactions on Power Systems, 2023, 38, 1583-1595.	6.5	12
2	Two-Step Electricity Theft Detection Strategy Considering Economic Return Based on Convolutional Autoencoder and Improved Regression Algorithm. IEEE Transactions on Power Systems, 2022, 37, 2346-2359.	6.5	21
3	Data-Driven Event Identification in the U.S. Power Systems Based on 2D-OLPP and RUSBoosted Trees. IEEE Transactions on Power Systems, 2022, 37, 94-105.	6.5	42
4	Two-Stage MILP Model for Optimal Skeleton-Network Reconfiguration of Power System for Grid-Resilience Enhancement. Journal of Energy Engineering - ASCE, 2022, 148, .	1.9	9
5	Optimal lowâ€carbon scheduling of integrated local energy system considering oxygenâ€enriched combustion plant and generalized energy storages. IET Renewable Power Generation, 2022, 16, 671-687.	3.1	16
6	Controlled Islanding Strategy Considering Uncertainty of Renewable Energy Sources Based on Chance-constrained Model. Journal of Modern Power Systems and Clean Energy, 2022, 10, 471-481.	5.4	21
7	Bi-level Optimal Placement Model of Phase Switch Devices for Mitigating Three-Phase Unbalance in Low-Voltage Areas. IEEE Transactions on Power Systems, 2022, 37, 3149-3152.	6.5	4
8	Maximum openable capacity optimization method of active distribution network considering multiple users access. Energy Reports, 2022, 8, 43-50.	5.1	2
9	Early warning method for power supply service quality based on three-way decision theory and LSTM neural network. Energy Reports, 2022, 8, 537-543.	5.1	13
10	Demand response ability evaluation based on seasonal and trend decomposition using LOESS and S–G filtering algorithms. Energy Reports, 2022, 8, 292-299.	5.1	7
11	Data source authentication for wide-area synchrophasor measurements based on spatial signature extraction and quadratic kernel SVM. International Journal of Electrical Power and Energy Systems, 2022, 140, 108083.	5.5	5
12	Practical Event Location Estimation Algorithm for Power Transmission System Based on Triangulation and Oscillation Intensity. IEEE Transactions on Power Delivery, 2022, 37, 5190-5202.	4.3	2
13	Optimization of distribution network reconfiguration based on Markov chain Monte Carlo method. Energy Reports, 2022, 8, 679-685.	5.1	4
14	Optimal dayâ€ahead scheduling of multiple integrated energy systems considering integrated demand response, cooperative game and virtual energy storage. IET Generation, Transmission and Distribution, 2021, 15, 1657-1673.	2.5	41
15	Energy-saving rating of green Bed and Breakfast based on the fuzzy comprehensive evaluation. Energy Reports, 2021, 7, 197-203.	5.1	6
16	Multi-objective optimization strategy of multi-sources power system operation based on fuzzy chance constraint programming and improved analytic hierarchy process. Energy Reports, 2021, 7, 268-274.	5.1	12
17	An operation health status monitoring algorithm of special transformers based on BIRCH and Gaussian cloud methods. Energy Reports, 2021, 7, 253-260.	5.1	5
18	The optimal emergency demand response (EDR) mechanism for rural power grid considering consumers' satisfaction. Energy Reports, 2021, 7, 118-125.	5.1	10

SHENGYUAN LIU

#	Article	IF	CITATIONS
19	Optimal operation of integrated energy system considering virtual heating energy storage. Energy Reports, 2021, 7, 419-425.	5.1	13
20	A Strategy for judging real-time and active reporting outage based on the power consumption information acquisition system. Energy Reports, 2021, 7, 380-388.	5.1	0
21	Identification of distribution network topology parameters based on multidimensional operation data. Energy Reports, 2021, 7, 304-311.	5.1	8
22	Two-dimensional evaluation model of electrical equipment based on combined weighting and rating algorithm. Energy Reports, 2021, 7, 443-448.	5.1	6
23	Optimal <scp>BRA</scp> based electric demand prediction strategy considering <scp>instanceâ€based</scp> learning of the forecast factors. International Transactions on Electrical Energy Systems, 2021, 31, e12967.	1.9	17
24	Fuzzy compromised solution-based novel home appliances scheduling and demand response with optimal dispatch of distributed energy resources. Applied Energy, 2021, 290, 116761.	10.1	58
25	Data source authentication of synchrophasor measurement devices based on 1D-CNN and GRU. Electric Power Systems Research, 2021, 196, 107207.	3.6	13
26	Multi-objective optimization model of electricity consumption for customers considering equipment consumption correlation. Energy Reports, 2021, 7, 209-215.	5.1	3
27	Wasserstein distance-based distributionally robust optimal scheduling in rural microgrid considering the coordinated interaction among source-grid-load-storage. Energy Reports, 2021, 7, 60-66.	5.1	16
28	Electricity Theft Detection Based on Stacked Autoencoder and the Undersampling and Resampling Based Random Forest Algorithm. IEEE Access, 2021, 9, 124044-124058.	4.2	19
29	Review on optimization methodologies in transmission network reconfiguration of power systems for grid resilience. International Transactions on Electrical Energy Systems, 2021, 31, e12704.	1.9	36
30	Adding power of artificial intelligence to situational awareness of large interconnections dominated by inverterâ€based resources. High Voltage, 2021, 6, 924-937.	4.7	5
31	Technologies and Practical Implementations of Air-conditioner Based Demand Response. Journal of Modern Power Systems and Clean Energy, 2021, 9, 1395-1413.	5.4	27
32	Medium-long term load forecasting method considering industry correlation for power management. Energy Reports, 2021, 7, 1231-1238.	5.1	3
33	Data-Driven Event Detection of Power Systems Based on Unequal-Interval Reduction of PMU Data and Local Outlier Factor. IEEE Transactions on Smart Grid, 2020, 11, 1630-1643.	9.0	70
34	A Review of Clean Electricity Policies—From Countries to Utilities. Sustainability, 2020, 12, 7946.	3.2	22
35	Identification of critical lines for enhancing disaster resilience of power systems with renewables based on complex network theory. IET Generation, Transmission and Distribution, 2020, 14, 4459-4467.	2.5	7
36	A Mixed CVaR-Based Stochastic Information Gap Approach for Building Optimal Offering Strategies of a CSP Plant in Electricity Markets. IEEE Access, 2020, 8, 85772-85783.	4.2	12

Shengyuan Liu

#	Article	IF	CITATIONS
37	Optimal GWCSO-based home appliances scheduling for demand response considering end-users comfort. Electric Power Systems Research, 2020, 187, 106477.	3.6	89
38	Data-Driven Abnormity Assessment for Low-Voltage Power Consumption and Supplies Based on CRITIC and Improved Radar Chart Algorithms. IEEE Access, 2020, 8, 27139-27151.	4.2	9
39	Practical Method for Mitigating Three-Phase Unbalance Based on Data-Driven User Phase Identification. IEEE Transactions on Power Systems, 2020, 35, 1653-1656.	6.5	67
40	Robust System Separation Strategy Considering Online Wide-Area Coherency Identification and Uncertainties of Renewable Energy Sources. IEEE Transactions on Power Systems, 2020, 35, 3574-3587.	6.5	68
41	Model-Free Data Authentication for Cyber Security in Power Systems. IEEE Transactions on Smart Grid, 2020, 11, 4565-4568.	9.0	58
42	Optimal coordinative operation strategy of the electric–thermal–gas integrated energy system considering CSP plant. IET Energy Systems Integration, 2020, 2, 187-195.	1.8	25
43	Biâ€layer portfolio selection model for electricity retailers based on behavioural portfolio theory under quota obligation of RPS. IET Generation, Transmission and Distribution, 2020, 14, 2857-2868.	2.5	9
44	Twoâ€stage restoration strategies for power systems considering coordinated dispatch between plugâ€in electric vehicles and wind power units. IET Smart Grid, 2020, 3, 123-132.	2.2	2
45	Optimal Scheduling in Active Distribution Network Considering Coordinated Interactions among Source-Network-Load-Storage. , 2020, , .		1
46	Evaluation and Replacement of Smart Meters. , 2020, , .		1
47	Data-Driven Condition Monitoring of Data Acquisition for Consumers' Transformers in Actual Distribution Systems Using <i>t</i> -Statistics. IEEE Transactions on Power Delivery, 2019, 34, 1578-1587.	4.3	10
48	Comprehensive Quality Assessment Algorithm for Smart Meters. Energies, 2019, 12, 3690.	3.1	1
49	Charging Load Forecasting of Electric Vehicle Based on Monte Carlo and Deep Learning. , 2019, , .		9
50	Investment Benefit Evaluation of Incremental Distribution Network Considering Regional Power Supply Growth. , 2019, , .		3
51	Fuzzy Equivalence Relation Clustering-Based Algorithm for Coherency Identification among Generators. Journal of Energy Engineering - ASCE, 2019, 145, .	1.9	5
52	WAMS-Based Coherency Detection for Situational Awareness in Power Systems With Renewables. IEEE Transactions on Power Systems, 2018, 33, 5410-5426.	6.5	49
53	Deep Learning Algorithm for Preliminary Siting of Substations Considering Various Features in Distribution Network Planning. IOP Conference Series: Earth and Environmental Science, 2018, 192, 012032.	0.3	2
54	A New Indicator of Transient Stability for Controlled Islanding of Power Systems: Critical Islanding Time. Energies, 2018, 11, 2975.	3.1	3

#	Article	IF	CITATIONS
55	Combination Weight and Radar Chart Based Evaluation Method for Utility Tunnel Planning in Multiple Energy Systems. , 2018, , .		3
56	A Joint Planning Method for Substations and Lines in Distribution Systems Based on the Parallel Bird Swarm Algorithm. Energies, 2018, 11, 2669.	3.1	6