Mohsen Ali Mandegari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2260985/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Combined optimal sensor network design and self-optimizing control with application in a typical sugarcane mill. Journal of Process Control, 2022, 114, 82-91.	1.7	3
2	Comparative techno-economic assessment of sugarcane biorefineries producing glutamic acid, levulinic acid and xylitol from sugarcane. Industrial Crops and Products, 2022, 184, 115053.	2.5	14
3	Sustainability assessment of sugarcane residues valorization to biobutadiene by exergy and exergoeconomic evaluation. Renewable and Sustainable Energy Reviews, 2021, 147, 111214.	8.2	14
4	Set-point optimization for plant-wide control of a sugarcane mill under process and market prices disturbances: Energy and economic perspectives. Journal of Process Control, 2021, 106, 173-183.	1.7	2
5	Using the aggregated system exergoeconomic methodology as a comparative tool for the cost-effectiveness of the sugarcane biorefinery options. Journal of Cleaner Production, 2021, 319, 128607.	4.6	4
6	A novel approach for valorization of waste tires into chemical and fuel (limonene and diesel) through pyrolysis: Process development and techno economic analysis. Fuel Processing Technology, 2021, 224, 107006.	3.7	31
7	Life cycle assessment of lignocellulosic biorefineries. , 2020, , 259-277.		1
8	Technoâ€economic analysis of inulooligosaccharides, protein, and biofuel coâ€production from Jerusalem artichoke tubers: A biorefinery approach. Biofuels, Bioproducts and Biorefining, 2020, 14, 776-793.	1.9	11
9	Revitalizing the sugarcane industry by adding value to Aâ€molasses in biorefineries. Biofuels, Bioproducts and Biorefining, 2020, 14, 1089-1104.	1.9	24
10	Techno-economic and environmental analysis of bio-oil production from forest residues via non-catalytic and catalytic pyrolysis processes. Energy Conversion and Management, 2020, 213, 112815.	4.4	64
11	Sugarcane Biofuel Production in South Africa, Guatemala, the Philippines, Argentina, Vietnam, Cuba, and Sri Lanka. , 2019, , 319-346.		8
12	Exergoeconomic analysis of lactic acid and power cogeneration from sugarcane residues through a biorefinery approach. Renewable Energy, 2019, 143, 872-889.	4.3	48
13	Comparison of immobilized and free enzyme systems in industrial production of shortâ€chain fructooligosaccharides from sucrose using a technoâ€economic approach. Biofuels, Bioproducts and Biorefining, 2019, 13, 1274-1288.	1.9	10
14	Assessment of the thermodynamic performance improvement of a typical sugar mill through the integration of waste-heat recovery technologies. Applied Thermal Engineering, 2019, 158, 113768.	3.0	25
15	Disturbance modelling through steady-state value deviations: The determination of suitable energy indicators and parameters for energy consumption monitoring in a typical sugar mill. Energy, 2019, 176, 211-223.	4.5	14
16	Exergy analysis of a lignocellulosic-based biorefinery annexed to a sugarcane mill for simultaneous lactic acid and electricity production. Energy, 2018, 149, 623-638.	4.5	158
17	A new insight into sugarcane biorefineries with fossil fuel co-combustion: Techno-economic analysis and life cycle assessment. Energy Conversion and Management, 2018, 165, 76-91.	4.4	86
18	Simulation and comparison of processes for biobutanol production from lignocellulose via ABE fermentation. Biofuels, Bioproducts and Biorefining, 2018, 12, 1023-1036.	1.9	29

Mohsen Ali Mandegari

#	Article	IF	CITATIONS
19	Study of purge angle effects on the desiccant wheel performance. Energy Conversion and Management, 2017, 137, 12-20.	4.4	19
20	Integrated techno-economic and environmental analysis of butadiene production from biomass. Bioresource Technology, 2017, 239, 37-48.	4.8	62
21	Multi-product biorefineries from lignocelluloses: a pathway to revitalisation of the sugar industry?. Biotechnology for Biofuels, 2017, 10, 87.	6.2	151
22	Multi riteria analysis of a biorefinery for coâ€production of lactic acid and ethanol from sugarcane lignocellulose. Biofuels, Bioproducts and Biorefining, 2017, 11, 971-990.	1.9	65
23	Economic and environmental assessment of cellulosic ethanol production scenarios annexed to a typical sugar mill. Bioresource Technology, 2017, 224, 314-326.	4.8	79
24	Recent trends on techno-economic assessment (TEA) of sugarcane biorefineries. Biofuel Research Journal, 2017, 4, 704-712.	7.2	55
25	Techno-economic comparison of biojet fuel production from lignocellulose, vegetable oil and sugar cane juice. Bioresource Technology, 2016, 216, 331-339.	4.8	116
26	A critical review on biomass gasification, co-gasification, and their environmental assessments. Biofuel Research Journal, 2016, 3, 483-495.	7.2	162
27	Exergy Performance Analysis and Optimization of a Desiccant Wheel System. Journal of Thermal Science and Engineering Applications, 2015, 7, .	0.8	24
28	Energy approach analysis of desiccant wheel operation. Energy Systems, 2014, 5, 551-569.	1.8	15
29	Study of effective parameters in the Fischer Tropsch synthesis using monolithic CNT supported cobalt catalysts. Fuel, 2014, 132, 27-35.	3.4	14
30	A Study on the Optimization of an Air Dehumidification Desiccant System. Journal of Thermal Science and Engineering Applications, 2013, 5, .	0.8	8
31	Performance assessment of hybrid desiccant cooling system at various climates. Energy Efficiency, 2010, 3, 177-187.	1.3	14