Fei Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2260839/publications.pdf

Version: 2024-02-01

279701 302012 1,659 47 23 39 citations h-index g-index papers 47 47 47 1861 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Twoâ€Dimensional (2D) Covalent Organic Framework as Efficient Cathode for Binderâ€free Lithiumâ€lon Battery. ChemSusChem, 2020, 13, 2457-2463.	3.6	159
2	Electrochromic two-dimensional covalent organic framework with a reversible dark-to-transparent switch. Nature Communications, 2020, $11,5534$.	5.8	149
3	Photostimulusâ€Responsive Largeâ€Area Twoâ€Dimensional Covalent Organic Framework Films. Angewandte Chemie - International Edition, 2019, 58, 16101-16104.	7.2	141
4	An irreversible electrolyte anion-doping strategy toward a superior aqueous Zn-organic battery. Energy Storage Materials, 2020, 33, 283-289.	9.5	103
5	A Metal–Organic Framework Based on a Nickel Bis(dithiolene) Connector: Synthesis, Crystal Structure, and Application as an Electrochemical Glucose Sensor. Journal of the American Chemical Society, 2020, 142, 20313-20317.	6.6	83
6	Rational Control of Charge Transfer Excitons Toward Highâ€Contrast Reversible Mechanoresponsive Luminescent Switching. Angewandte Chemie - International Edition, 2020, 59, 17580-17586.	7.2	83
7	Recent Progress in High Linearly Fused Polycyclic Conjugated Hydrocarbons (PCHs, <i>n</i> > 6) with Wellâ€Defined Structures. Advanced Science, 2020, 7, 1903766.	5.6	80
8	Porous Supramolecular Networks Constructed of One-Dimensional Metal–Organic Chains: Carbon Dioxide and Iodine Capture. Inorganic Chemistry, 2015, 54, 1655-1660.	1.9	63
9	Hexagonal Bipyramidal Dy(III) Complexes as a Structural Archetype for Single-Molecule Magnets. Inorganic Chemistry, 2019, 58, 2610-2617.	1.9	60
10	Green Grinding-Coassembly Engineering toward Intrinsically Luminescent Tetracene in Cocrystals. ACS Nano, 2020, 14, 15962-15972.	7.3	54
11	Modulating Single-Molecule Magnetic Behavior of a Dinuclear Erbium(III) Complex by Solvent Exchange. Inorganic Chemistry, 2017, 56, 336-343.	1.9	47
12	Important Role of Intermolecular Interaction in Cobalt(II) Single-Ion Magnet from Single Slow Relaxation to Double Slow Relaxation. Inorganic Chemistry, 2018, 57, 10761-10767.	1.9	47
13	Concomitant Use of Tetrathiafulvalene and 7,7,8,8-Tetracyanoquinodimethane within the Skeletons of Metal–Organic Frameworks: Structures, Magnetism, and Electrochemistry. Inorganic Chemistry, 2019, 58, 8657-8664.	1.9	39
14	lonic covalent organic framework based electrolyte for fast-response ultra-low voltage electrochemical actuators. Nature Communications, 2022, 13, 390.	5.8	36
15	Benzoateâ€Induced Highâ€Nuclearity Silver Thiolate Clusters. Chemistry - A European Journal, 2018, 24, 4967-4972.	1.7	33
16	Enhanced dielectricity coupled to spin-crossover in a one-dimensional polymer iron(ii) incorporating tetrathiafulvalene. Chemical Science, 2020, 11, 6229-6235.	3.7	32
17	Unexpected Synthesis, Properties, and Nonvolatile Memory Device Application of Imidazole-Fused Azaacenes. Journal of Organic Chemistry, 2020, 85, 101-107.	1.7	31
18	Insights into the Control of Optoelectronic Properties in Mixedâ€Stacking Chargeâ€Transfer Complexes. Chemistry - A European Journal, 2020, 26, 3578-3585.	1.7	29

#	Article	IF	CITATIONS
19	Tuning Electrical―and Photoâ€Conductivity by Cation Exchange within a Redoxâ€Active Tetrathiafulvaleneâ€Based Metal–Organic Framework. Angewandte Chemie - International Edition, 2020, 59, 18763-18767.	7.2	29
20	Three Properties in One Coordination Complex: Chirality, Spin Crossover, and Dielectric Switching. European Journal of Inorganic Chemistry, 2017, 2017, 3144-3149.	1.0	29
21	Electropolymerized 1D Growth Coordination Polymer for Hybrid Electrochromic Aqueous Zinc Battery. Advanced Science, 2021, 8, e2101944.	5.6	27
22	Tracking the Process of a Solvothermal Domino Reaction Leading to a Stable Triheteroarylmethyl Radical: A Combined Crystallographic and Massâ€Spectrometric Study. Angewandte Chemie - International Edition, 2019, 58, 3748-3753.	7.2	26
23	Tuning Electrical―and Photoâ€Conductivity by Cation Exchange within a Redoxâ€Active Tetrathiafulvaleneâ€Based Metal–Organic Framework. Angewandte Chemie, 2020, 132, 18922-18926.	1.6	24
24	Hierarchical tandem assembly of planar $[3\tilde{A}-3]$ building units into $\{3\tilde{A}-[3\tilde{A}-3]\}$ oligomers: mixed-valency, electrical conductivity and magnetism. Chemical Science, 2018, 9, 7498-7504.	3.7	23
25	Multi-thiol-supported dicarboxylate-based metal–organic framework with excellent performance for lithium-ion battery. Chemical Engineering Journal, 2022, 431, 133234.	6.6	23
26	Photochemically Tuned Magnetic Properties in an Erbium(III)-Based Easy-Plane Single-Molecule Magnet. Inorganic Chemistry, 2019, 58, 14440-14448.	1.9	21
27	Rareâ€Earth Metal Tetrathiafulvalene Carboxylate Frameworks as Redoxâ€Switchable Singleâ€Molecule Magnets. Chemistry - A European Journal, 2021, 27, 622-627.	1.7	21
28	Photostimulusâ€Responsive Largeâ€Area Twoâ€Dimensional Covalent Organic Framework Films. Angewandte Chemie, 2019, 131, 16247-16250.	1.6	18
29	Molecularâ€Level Methylcellulose/MXene Hybrids with Greatly Enhanced Electrochemical Actuation. Advanced Materials, 2022, 34, e2200660.	11.1	18
30	Rational Control of Charge Transfer Excitons Toward Highâ€Contrast Reversible Mechanoresponsive Luminescent Switching. Angewandte Chemie, 2020, 132, 17733-17739.	1.6	17
31	Copper(II)-Assisted Ligand Fragmentation Leading to Three Families of Metallamacrocycle. Inorganic Chemistry, 2020, 59, 13524-13532.	1.9	14
32	The incorporation of the ionization effect in organic semiconductors assists in triggering multilevel resistive memory behaviors. Materials Chemistry Frontiers, 2020, 4, 3280-3289.	3.2	13
33	A Cuprous [4 × 4] Grid: Single-Crystal to Single-Crystal Transformation and Fading of Luminescence by Solvent Inclusion. Inorganic Chemistry, 2018, 57, 15040-15043.	1.9	11
34	Tunable low-dimensional self-assembly of H-shaped bichromophoric perylenediimide Gemini in solution. Nanoscale, 2020, 12, 3058-3067.	2.8	11
35	Controlling Electron Spin Decoherence in Nd-based Complexes via Symmetry Selection. IScience, 2020, 23, 100926.	1.9	11
36	Electrical Conductivity of Copper Hexamers Tuned by their Ground-State Valences. Inorganic Chemistry, 2018, 57, 3443-3450.	1.9	10

#	Article	IF	CITATIONS
37	Improved stability and efficiency of polymer-based selenium solar cells through the usage of tin(<scp>iv</scp>) oxide in the electron transport layers and the analysis of aging dynamics. Physical Chemistry Chemical Physics, 2020, 22, 14838-14845.	1.3	7
38	Employing Equivalent Circuit Models to Study the Performance of Seleniumâ€Based Solar Cells with Polymers as Hole Transport Layers. Small, 2021, 17, e2101226.	5.2	7
39	Magnetostructural relationship for μ ₂ -phenoxido bridged ferric dimers. Dalton Transactions, 2017, 46, 4317-4324.	1.6	5
40	Enhanced luminescence of single-benzene fluorescent molecules through halogen bond cocrystals. CrystEngComm, 2022, 24, 3537-3545.	1.3	5
41	Imideâ€Fused Diazatetracenes: Synthesis, Characterization, and Application in Perovskite Solar Cells. Chemistry - A European Journal, 2020, 26, 4220-4225.	1.7	4
42	A co-crystallization strategy toward high-performance n-type organic semiconductors through charge transport switching from p-type planar azaacene derivatives. Journal of Materials Chemistry C, 2022, 10, 2757-2762.	2.7	4
43	Seleniumâ€Based Solar Cell with Conjugated Polymers as Both Electron and Hole Transport Layers to Realize High Water Tolerance as well as Good Longâ€Term and Thermal Stability. Solar Rrl, 2020, 4, 2000425.	3.1	3
44	Twoâ€Photon Absorption of Butterflyâ€Shaped Carbonylâ€Bridged Twistarene. Asian Journal of Organic Chemistry, 2020, 9, 579-583.	1.3	3
45	Beyond Perovskite Solar Cells: Tellurium Iodide as a Promising Lightâ€Absorbing Material for Solutionâ€Processed Photovoltaic Application. Chemistry - an Asian Journal, 2020, 15, 1505-1509.	1.7	3
46	Magnetically Directed Co-nanoinitiators for Cross-Linking Adhesives and Enhancing Mechanical Properties. ACS Applied Materials & Samp; Interfaces, 2021, 13, 57851-57863.	4.0	2
47	Butterflyâ€ike Tetraazaacenequinodimethane Derivatives: Synthesis, Structure and Halochromic Properties. Chemistry - an Asian Journal, 2020, 15, 2198-2202.	1.7	1