
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2260694/publications.pdf Version: 2024-02-01

PEDRO D D VAZ

#	Article	IF	CITATIONS
1	Preparation and physicochemical characterization of Ag nanoparticles biosynthesized by Lippia citriodora (Lemon Verbena). Colloids and Surfaces B: Biointerfaces, 2010, 81, 67-73.	2.5	186
2	Inelastic neutron scattering study of reline: shedding light on the hydrogen bonding network of deep eutectic solvents. Physical Chemistry Chemical Physics, 2017, 19, 17998-18009.	1.3	132
3	Inside PEF: Chain Conformation and Dynamics in Crystalline and Amorphous Domains. Macromolecules, 2018, 51, 3515-3526.	2.2	110
4	Loading and delivery of sertraline using inorganic micro and mesoporous materials. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 66, 357-365.	2.0	101
5	Engineering highly efficient Eu(iii)-based tri-ureasil hybrids toward luminescent solar concentrators. Journal of Materials Chemistry A, 2013, 1, 7339.	5.2	95
6	Layered Double Hydroxide Nanoclusters: Aqueous, Concentrated, Stable, and Catalytically Active Colloids toward Green Chemistry. ACS Nano, 2016, 10, 5550-5559.	7.3	89
7	Molybdenum η3-Allyl Dicarbonyl Complexes as a New Class of Precursors for Highly Reactive Epoxidation Catalysts withtert-Butyl Hydroperoxide. Organometallics, 2007, 26, 5548-5556.	1.1	77
8	Heteropolynuclear Gold Complexes with Metallophilic Interactions: Modulation of the Luminescent Properties. Inorganic Chemistry, 2010, 49, 8255-8269.	1.9	63
9	C?Hzz�O hydrogen bonds in liquid cyclohexanone revealed by the ?C?O splitting and the ?C-H blue shift. Journal of Raman Spectroscopy, 2003, 34, 863-867.	1.2	57
10	Highly selective and recyclable MoO3 nanoparticles in epoxidation catalysis. Applied Catalysis A: General, 2015, 504, 344-350.	2.2	49
11	Vanadyl cationic complexes as catalysts in olefin oxidation. Dalton Transactions, 2015, 44, 5125-5138.	1.6	47
12	Heptacoordinate tricarbonyl Mo(II) complexes as highly selective oxidation homogeneous and heterogeneous catalysts. Journal of Catalysis, 2008, 256, 301-311.	3.1	46
13	Organometallic Mo complex anchored to magnetic iron oxide nanoparticles as highly recyclable epoxidation catalyst. Journal of Organometallic Chemistry, 2014, 760, 2-10.	0.8	42
14	Bio-inspired Mo(II) complexes as active catalysts in homogeneous and heterogeneous olefin epoxidation. Applied Catalysis A: General, 2010, 384, 84-93.	2.2	41
15	Highly enantioselective olefin epoxidation controlled by helical confined environments. Journal of Catalysis, 2014, 309, 21-32.	3.1	40
16	Hydrogenâ€Bond Dynamics of CHâ‹â‹ô Interactions: The Chloroformâ‹â‹â‹Acetone Case. Chemis Journal, 2010, 16, 9010-9017.	try <u>-</u> A Eur 1.7	opean
17	Photocatalytic degradation of rhodamine B using Mo heterogeneous catalysts under aerobic conditions. Applied Catalysis B: Environmental, 2012, 113-114, 180-191.	10.8	36

18Mo(II) complexes: A new family of cytotoxic agents?. Journal of Inorganic Biochemistry, 2010, 104,
1171-1177.1.534

#	Article	IF	CITATIONS
19	MoO2 nanoparticles as highly efficient olefin epoxidation catalysts. Applied Catalysis A: General, 2015, 504, 399-407.	2.2	32
20	Pyridine Carboxylate Complexes of Moll as Active Catalysts in Homogeneous and Heterogeneous Polymerization. European Journal of Inorganic Chemistry, 2007, 2007, 2917-2925.	1.0	31
21	Towards the understanding of the spectroscopic behaviour of the C–H oscillator in C–Hâ⊄O hydrogen bonds: the effect of solvent polarity. Chemical Physics Letters, 2004, 390, 358-361.	1.2	30
22	C≡H â‹s O Hydrogen Bonds in Small Ring Carbonyl Compounds: Vibrational Spectroscopy and Ab initio Calculations. Structural Chemistry, 2005, 16, 287-293.	1.0	30
23	Hepta-coordinate halocarbonyl molybdenum(II) and tungsten(II) complexes as heterogeneous polymerization catalysts. Journal of Molecular Catalysis A, 2006, 256, 90-98.	4.8	30
24	Immobilisation of rhodium acetonitrile complexes in ordered mesoporous silica. Physical Chemistry Chemical Physics, 2002, 4, 3098-3105.	1.3	29
25	Bioactive Pseudoâ€Câ€nucleosides Containing Thiazole, Thiazolidinone, and Tetrazole Rings. Journal of Carbohydrate Chemistry, 2005, 24, 275-296.	0.4	29
26	An Oligosilsesquioxane Cage Functionalized with Molybdenum(II) Organometallic Fragments. Organometallics, 2012, 31, 4495-4503.	1.1	28
27	Hydrogen Bond Dynamics of Cellulose through Inelastic Neutron Scattering Spectroscopy. Biomacromolecules, 2018, 19, 1305-1313.	2.6	28
28	Performance evaluation of mesoporous host materials in olefin epoxidation using Mo(II) and Mo(VI) active species—Inorganic vs. hybrid matrix. Applied Catalysis A: General, 2011, 408, 105-116.	2.2	27
29	Marine sponge melanin: a new source of an old biopolymer. Structural Chemistry, 2012, 23, 115-122.	1.0	26
30	Electron–Phonon Coupling in Luminescent Europium-Doped Hydride Perovskites Studied by Luminescence Spectroscopy, Inelastic Neutron Scattering, and First-Principles Calculations. Journal of Physical Chemistry C, 2018, 122, 10501-10509.	1.5	26
31	Strong Experimental Evidence of CH···O Hydrogen Bonds in Cyclopentanone:  The Splitting of the ν(CO Mode Revisited. Journal of Physical Chemistry A, 2003, 107, 6301-6305.) _{1.1}	25
32	Asymmetric synthesis of trans-4,5-dioxygenated cyclopentenone derivatives by organocatalyzed rearrangement of pyranones and enzymatic dynamic kinetic resolution. Tetrahedron, 2011, 67, 2779-2787.	1.0	25
33	Synthesis and catalytic properties of manganese(II) and oxovanadium(IV) complexes anchored to mesoporous MCM-41. Microporous and Mesoporous Materials, 2008, 112, 14-25.	2.2	24
34	Asymmetric Monomer, Amorphous Polymer? Structure–Property Relationships in 2,4-FDCA and 2,4-PEF. Macromolecules, 2020, 53, 1380-1387.	2.2	24
35	Pseudopolymorphism in Nickel(II) Complexes with 6-Methylpicolinate. Synthesis, Structural, Spectroscopic, Thermal, and Density Functional Theory Studies. Crystal Growth and Design, 2008, 8, 3465-3473.	1.4	23
36	Activity of Mo(II) allylic complexes supported in MCM-41 as oxidation catalysts precursors. Microporous and Mesoporous Materials, 2009, 117, 670-677.	2.2	23

#	Article	IF	CITATIONS
37	Synthesis of Purine Nucleosides from <scp>D</scp> â€Clucuronic Acid Derivatives and Evaluation of Their Cholinesteraseâ€Inhibitory Activities. European Journal of Organic Chemistry, 2014, 2014, 2770-2779.	1.2	22
38	Electrochemical studies and potential anticancer activity in ferrocene derivatives. Journal of Coordination Chemistry, 2017, 70, 314-327.	0.8	22
39	Synthesis of Tetrahydronaphthalene Lignan Esters by Intramolecular Cyclization of Ethyl <i>p</i> -Azidophenyl-2-phenylalkanoates and Evaluation of the Growth Inhibition of Human Tumor Cell Lines. Journal of Medicinal Chemistry, 2011, 54, 3175-3187.	2.9	21
40	The role of 4,7-disubstituted phenanthroline ligands in energy transfer of europium(iii) complexes: a DFT study. New Journal of Chemistry, 2011, 35, 2435.	1.4	21
41	Advantageous delivery of nifedipine from inorganic materials showing increased solubility and biocompatibility. Microporous and Mesoporous Materials, 2014, 183, 192-200.	2.2	21
42	Exploring bulk and colloidal Mg/Al hydrotalcite–Au nanoparticles hybrid materials in aerobic olefin epoxidation. Journal of Catalysis, 2018, 358, 187-198.	3.1	21
43	Effect of Food Preparations on In Vitro Bioactivities and Chemical Components of Fucus vesiculosus. Foods, 2020, 9, 955.	1.9	21
44	Modelling the luminescence of extended solids: an example of a highly luminescent MCM-41 impregnated with a Eu ³⁺ β-diketonate complex. Journal of Materials Chemistry C, 2014, 2, 9701-9711.	2.7	20
45	Poly(4-styrene sulfonic acid)/bacterial cellulose membranes: Electrochemical performance in a single-chamber microbial fuel cell. Bioresource Technology Reports, 2020, 9, 100376.	1.5	20
46	C–H⋯O Hydrogen bonding in 4-phenyl-benzaldehyde: A comprehensive crystallographic, spectroscopic and computational study. Physical Chemistry Chemical Physics, 2005, 7, 3027.	1.3	19
47	Syntheses, X-ray Structures, Photochemistry, Redox Properties, and DFT Calculations of Interconvertiblefac- andmer-[Mn(SPS)(CO)3] Isomers Containing a Flexible SPS-Based Pincer Ligandâ€. Inorganic Chemistry, 2005, 44, 9213-9224.	1.9	19
48	Vibrational Study on the Local Structure of Post‣ynthesis and Hybrid Mesoporous Materials: Are There Fundamental Distinctions?. Chemistry - A European Journal, 2007, 13, 7874-7882.	1.7	19
49	A green-emitting α-substituted β-diketonate Tb ³⁺ phosphor for ultraviolet LED-based solid-state lighting. Journal of Coordination Chemistry, 2014, 67, 4076-4089.	0.8	19
50	Clays in Organic Synthesis – Preparation and Catalytic Applications. Current Organic Synthesis, 2012, 9, 670-694.	0.7	18
51	Wittig Reaction: Domino Olefination and Stereoselectivity DFT Study. Synthesis of the Miharamycins' Bicyclic Sugar Moiety. Organic Letters, 2015, 17, 5622-5625.	2.4	18
52	Synthesis of Co–Al layered double hydroxide nanoclusters as reduction nanocatalyst in aqueous media. Journal of Asian Ceramic Societies, 2017, 5, 466-471.	1.0	17
53	Water in Deep Eutectic Solvents: New Insights From Inelastic Neutron Scattering Spectroscopy. Frontiers in Physics, 2022, 10, .	1.0	17
54	Synthesis and characterisation of hybrid mesoporous materials with the 1,4-diazobutadiene ligand. Microporous and Mesoporous Materials, 2006, 95, 104-111.	2.2	15

#	Article	IF	CITATIONS
55	Mixed-Ligand Rhenium Tricarbonyl Complexes Anchored on a (κ ² -H,S) Trihydro(mercaptoimidazolyl)borate: A Missing Binding Motif for Soft Scorpionates. Organometallics, 2008, 27, 1334-1337.	1.1	14
56	Disappearing and Concomitant Polymorphism of Nickel(II) Complexes with 6-Hydroxypicolinic Acid. Structural and Density Functional Theory Studies. Crystal Growth and Design, 2010, 10, 3685-3693.	1.4	14
57	The Versatility of Immobilized Mo Complexes in Organic Transformations - Epoxidation and Metathesis Reactions. Current Organic Chemistry, 2012, 16, 89-114.	0.9	14
58	Pyridine Carboxylate Complexes of Mo(II) as Active Catalysts in Homogeneous and Heterogeneous Olefin Epoxidation. Current Inorganic Chemistry, 2011, 1, 146-155.	0.2	14
59	Understanding the vibrational spectra of crystalline isoniazid: Raman, IR and INS spectroscopy and solid-state DFT study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 204, 452-459.	2.0	13
60	Hybrid mesoporous MCM-41 type material containing 1,4-diazobutadiene chelate ligand in the walls. Progress in Solid State Chemistry, 2005, 33, 163-170.	3.9	12
61	Crystal structure landscapes from combined vibrational spectroscopy and ab initio calculations: 4-(Dimethylamino)benzaldehyde. Computational and Theoretical Chemistry, 2010, 946, 65-69.	1.5	12
62	Helical Channel Mesoporous Materials with Embedded Magnetic Iron Nanoparticles: Chiral Recognition and Implications in Asymmetric Olefin Epoxidation. Advanced Synthesis and Catalysis, 2015, 357, 3127-3140.	2.1	12
63	Looking inside the pores of a MCM-41 based Mo heterogeneous styrene oxidation catalyst: an inelastic neutron scattering study. Physical Chemistry Chemical Physics, 2016, 18, 17272-17280.	1.3	12
64	Catalytic performance of bulk and colloidal Co/Al layered double hydroxide with Au nanoparticles in aerobic olefin oxidation. Applied Catalysis A: General, 2019, 584, 117155.	2.2	12
65	Understanding the Structure and Dynamics of Nanocellulose-Based Composites with Neutral and Ionic Poly(methacrylate) Derivatives Using Inelastic Neutron Scattering and DFT Calculations. Molecules, 2020, 25, 1689.	1.7	12
66	Near Infrared Reflectance Spectroscopy Coupled to Chemometrics as a Cost-Effective, Rapid, and Non-Destructive Tool for Fish Fraud Control: Monitoring Source, Condition, and Nutritional Value of Five Common Whitefish Species. Journal of AOAC INTERNATIONAL, 2021, 104, 53-60.	0.7	12
67	The Role of C-H···O Interactions in the Solid and Liquid-Phase Structures of Methyltrioxo Rhenium. European Journal of Inorganic Chemistry, 2005, 2005, 1836-1840.	1.0	11
68	Catalytic Application of Fe-doped MoO2 Tremella-Like Nanosheets. Topics in Catalysis, 2016, 59, 1123-1131.	1.3	11
69	Melanin: Production from Cheese Bacteria, Chemical Characterization, and Biological Activities. International Journal of Environmental Research and Public Health, 2021, 18, 10562.	1.2	11
70	Structural preferences and isomerism in nickel(II) and copper(II) complexes with 3-hydroxypicolinic acid. Polyhedron, 2012, 39, 66-75.	1.0	10
71	Synthesis and catalytic activity of Mo(II) complexes of α-diimines intercalated in layered double hydroxides. Inorganica Chimica Acta, 2019, 486, 274-282.	1.2	10
72	Porous materials as delivery and protective agents for Vitamin A. RSC Advances, 2016, 6, 66495-66504.	1.7	8

#	Article	IF	CITATIONS
73	New heterogeneous catalysts with Mo(II) intercalated in layered double hydroxides. Inorganica Chimica Acta, 2017, 455, 483-488.	1.2	8
74	Zinc biomimetic catalysts for epoxidation of olefins with H2O2. Applied Clay Science, 2020, 190, 105562.	2.6	8
75	Tuning the Surface of Mesoporous Materials Towards Hydrophobicity-Effects in Olefin Epoxidation. Current Inorganic Chemistry, 2011, 1, 156-165.	0.2	8
76	A new role for layered double hydroxides hybrid materials—uptake and delivery of small molecules into the gas phase. New Journal of Chemistry, 2010, 34, 541.	1.4	7
77	Association of aescin with β- and γ-cyclodextrins studied by DFT calculations and spectroscopic methods. Beilstein Journal of Nanotechnology, 2017, 8, 348-357.	1.5	7
78	Can Semiâ€empirical Calculations Help Solve Mass Spectrometry Problems? Protonation Sites and Proton Affinities of Amino Acids. ChemPlusChem, 2013, 78, 1149-1156.	1.3	6
79	Vibrational Dynamics of Crystalline 4-Phenylbenzaldehyde from INS Spectra and Periodic DFT Calculations. Molecules, 2020, 25, 1374.	1.7	6
80	On the way to understand antioxidants: chromanol and dimethoxyphenols gasâ€phase acidities. Journal of Mass Spectrometry, 2011, 46, 640-648.	0.7	5
81	Intermolecular C–H⋯O interactions in cyclopentanone: An inelastic neutron scattering study. Chemical Physics, 2013, 427, 117-123.	0.9	5
82	Exploring C–H···O hydrogen bonds in dihydrocoumarin from combined vibrational spectroscopy and DFT calculations. Chemical Physics Letters, 2012, 551, 86-91.	1.2	4
83	Asymmetric binuclear Ni(ii) and Cu(ii) Schiff base metallopolymers. RSC Advances, 2015, 5, 39495-39504.	1.7	4
84	Probing the relevance of MoO ₂ nanoparticles' synthesis on their catalytic activity by inelastic neutron scattering. Physical Chemistry Chemical Physics, 2020, 22, 896-904.	1.3	4
85	New Insights on the Vibrational Dynamics of 2-Methoxy-, 4-Methoxy- and 4-Ethoxy-Benzaldehyde from INS Spectra and Periodic DFT Calculations. Materials, 2021, 14, 4561.	1.3	4
86	Colourless aegirine in metamorphic rocks from Bayan Obo (Inner Mongolia): lack of charge transfer transitions as possible explanation. European Journal of Mineralogy, 2014, 25, 987-993.	0.4	3
87	Solventless Olefin Epoxidation Using a Mo–Loaded Sisal Derived Acid har Catalyst. ChemistrySelect, 2018, 3, 10357-10363.	0.7	3
88	Vibrational dynamics of 4-fluorobenzaldehyde from periodic DFT calculations. Chemical Physics Letters: X, 2019, 2, 100006.	2.1	3
89	Selective and Efficient Olefin Epoxidation by Robust Magnetic Mo Nanocatalysts. Catalysts, 2021, 11, 380.	1.6	3
90	Substrate–Solvent Crosstalk—Effects on Reaction Kinetics and Product Selectivity in Olefin Oxidation Catalysis. Chemistry, 2021, 3, 753-764.	0.9	3

#	Article	IF	CITATIONS
91	Vibrational Dynamics in crystalline 4-(dimethylamino) benzaldehyde: Inelastic Neutron Scattering and Periodic DFT Study. Materials, 2022, 15, 475.	1.3	2
92	Validation of the Steinrath Index Predictions for the Degree of Soil Aggressiveness Toward Copper Corrosion in Soils Contaminated with Chlorides. Corrosion, 2015, 71, 1267-1277.	0.5	1
93	Nitroarene and dye reduction with 2:1 Co/Al layered double hydroxide catalysts – Is gold still necessary?. Inorganica Chimica Acta, 2021, 521, 120336.	1.2	1