Eleonora Carini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2260512/publications.pdf

Version: 2024-02-01

361296 377752 1,334 56 20 34 citations h-index g-index papers 56 56 56 1440 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Technological functionality of composite flours from sorghum, tapioca and cowpea. International Journal of Food Science and Technology, 2022, 57, 4736-4743.	1.3	7
2	A fibre syrup for the sugar reduction in fruit filling for bakery application. International Journal of Gastronomy and Food Science, 2022, 28, 100545.	1.3	5
3	The use of red lentil flour in bakery products: How do particle size and substitution level affect rheological properties of wheat bread dough?. LWT - Food Science and Technology, 2021, 136, 110299.	2.5	45
4	Use of the 1H NMR technique to describe the kneading step of wholewheat dough: The effect of kneading time and total water content. Food Chemistry, 2021, 338, 128120.	4.2	18
5	Sprouting of Sorghum (Sorghum bicolor [L.] Moench): Effect of Drying Treatment on Protein and Starch Features. Foods, 2021, 10, 407.	1.9	25
6	Wholewheat bread: Effect of gradual water addition during kneading on dough and bread properties. LWT - Food Science and Technology, 2021, 142, 111017.	2.5	8
7	A multilevel investigation supported by multivariate analysis for tomato product formulation. European Food Research and Technology, 2021, 247, 2345-2354.	1.6	1
8	The effect of gradual flour addition during kneading on wholewheat dough properties and bread quality. LWT - Food Science and Technology, 2021, 147, 111564.	2.5	4
9	Can a structured emulsion (fat in waterâ€fibre system) substitute saturated fat in cookies without hampering their quality?. International Journal of Food Science and Technology, 2021, 56, 5071-5079.	1.3	1
10	Semiâ€solid fibre syrup for sugar reduction in cookies. International Journal of Food Science and Technology, 2021, 56, 5080-5088.	1.3	3
11	Insight into molecular and rheological properties of sprouted sorghum flour. Food Chemistry, 2021, 356, 129603.	4.2	5
12	Strawberry ripple sauce: A semi-solid fibre syrup to reduce sugar content. International Journal of Gastronomy and Food Science, 2021, 25, 100411.	1.3	0
13	Can potato fiber efficiently substitute xanthan gum in modulating chemical properties of tomato products?. Food Hydrocolloids, 2020, 101, 105508.	5.6	7
14	Inulin-based emulsion filled gel as fat replacer in shortbread cookies: Effects during storage. LWT - Food Science and Technology, 2020, 133, 109888.	2.5	42
15	Structured fat–water–fiber systems as fat substitutes in shortbread formulation: modulation of dough characteristics following a multiscale approach. European Food Research and Technology, 2020, 246, 2249-2257.	1.6	4
16	The "Pappa di Parma―integrated approach against moderate acute malnutrition. Innovative Food Science and Emerging Technologies, 2020, 66, 102534.	2.7	2
17	Probing the Functionality of Physically Modified Corn Flour as Clean Label Thickening Agent with a Multiscale Characterization. Foods, 2020, 9, 1105.	1.9	7
18	Can a physically modified corn flour be used as fat replacer in a mayonnaise?. European Food Research and Technology, 2020, 246, 2493-2503.	1.6	16

#	Article	IF	Citations
19	Quality evaluation of chestnut flour addition on fresh pasta. LWT - Food Science and Technology, 2020, 126, 109303.	2.5	19
20	Water status and dynamics of high-moisture Mozzarella cheese as affected by frozen and refrigerated storage. Food Research International, 2020, 137, 109415.	2.9	23
21	Rediscovering bread quality of "old―Italian wheat (Triticum aestivum L. ssp. aestivum.) through an integrated approach: Physicochemical evaluation and consumers' perception. LWT - Food Science and Technology, 2020, 122, 109043.	2.5	11
22	Does cell wall integrity in legumes flours modulate physiochemical quality and in vitro starch hydrolysis of gluten-free bread?. Journal of Functional Foods, 2019, 59, 110-118.	1.6	29
23	Pulses for bread fortification: A necessity or a choice?. Trends in Food Science and Technology, 2019, 88, 416-428.	7.8	135
24	Bread staling: understanding the effects of transglutaminase and vital gluten supplementation on crumb moisture and texture using multivariate analysis. European Food Research and Technology, 2019, 245, 1337-1345.	1.6	7
25	Geographical origin discrimination of Pistachio (Pistacia vera L.) through combined analysis of physical and chemical features. European Food Research and Technology, 2019, 245, 143-150.	1.6	5
26	A multiâ€scale characterisation of the durum wheat pasta cooking process. International Journal of Food Science and Technology, 2019, 54, 1713-1719.	1.3	9
27	An overview of the Italian market for 2015: cooking quality and nutritional value of glutenâ€free pasta. International Journal of Food Science and Technology, 2019, 54, 780-786.	1.3	21
28	A multi-scale approach for pasta quality features assessment. LWT - Food Science and Technology, 2019, 101, 285-292.	2.5	15
29	Effectiveness of vital gluten and transglutaminase in the improvement of physico-chemical properties of fresh bread. LWT - Food Science and Technology, 2018, 92, 465-470.	2.5	17
30	Enhancing dough-making rheological performance of wheat flour by transglutaminase and vital gluten supplementation. LWT - Food Science and Technology, 2018, 91, 467-476.	2.5	16
31	Structured emulsions as butter substitutes: effects on physicochemical and sensory attributes of shortbread cookies. Journal of the Science of Food and Agriculture, 2018, 98, 3836-3842.	1.7	29
32	Effect of added ingredients on water status and physico-chemical properties of tomato sauce. Food Chemistry, 2017, 236, 101-108.	4.2	16
33	Staling and water dynamics in high-gluten bread. European Food Research and Technology, 2017, 243, 1173-1182.	1.6	15
34	The use of two-dimensional NMR relaxometry in bread staling: a valuable tool?. Food Chemistry, 2017, 237, 766-772.	4.2	17
35	Physical characterization of whole and skim dried milk powders. Journal of Food Science and Technology, 2017, 54, 3433-3442.	1.4	88
36	Staling of gluten-free breads: physico-chemical properties and 1H NMR mobility. European Food Research and Technology, 2017, 243, 867-877.	1.6	20

#	Article	IF	CITATIONS
37	Effect of different cooking methods on structure and quality of industrially frozen carrots. Journal of Food Science and Technology, 2016, 53, 2443-2451.	1.4	27
38	Effect of water and gluten on physico-chemical properties and stability of ready to eat shelf-stable pasta. Food Chemistry, 2016, 195, 91-96.	4.2	14
39	The use of potato fibre to improve bread physico-chemical properties during storage. Food Chemistry, 2016, 195, 64-70.	4.2	74
40	Effect of Flour, Gelatin and Salt on Water Status of Tomato Sauce. Food Biophysics, 2015, 10, 129-133.	1.4	3
41	Effect of bran on bread staling: Physico-chemical characterization and molecular mobility. Journal of Cereal Science, 2015, 65, 25-30.	1.8	23
42	Physicochemical, sensory properties and starch <i>in vitro</i> digestion of gluten-free breads. International Journal of Food Sciences and Nutrition, 2015, 66, 867-872.	1.3	10
43	Effect of Glycerol and Gluten on Mechanical Properties and 1H NMR Mobility of Cooked Pasta. Food Biophysics, 2015, 10, 474-480.	1.4	12
44	Bread staling: Effect of gluten on physico-chemical properties and molecular mobility. LWT - Food Science and Technology, 2014, 59, 418-425.	2.5	66
45	Physico-chemical properties of ready to eat, shelf-stable pasta during storage. Food Chemistry, 2014, 144, 74-79.	4.2	21
46	Water dynamics of ready to eat shelf stable pasta meals during storage. Innovative Food Science and Emerging Technologies, 2013, 17, 163-168.	2.7	21
47	Effect of the addition of bran fractions on bread properties. Journal of Cereal Science, 2013, 57, 325-332.	1.8	105
48	Pasta. Contemporary Food Engineering, 2013, , .	0.2	3
49	Effect of Formulation on Physicochemical Properties and Water Status of Nutritionally Enriched Fresh Pasta. Food and Bioprocess Technology, 2012, 5, 1642-1652.	2.6	25
50	Water molecular dynamics during bread staling by Nuclear Magnetic Resonance. LWT - Food Science and Technology, 2011, 44, 854-859.	2.5	72
51	Effect of Long-Term Storage on Water Status and Physicochemical Properties of Nutritionally Enhanced Tortillas. Food Biophysics, 2010, 5, 300-308.	1.4	8
52	Effect of different mixers on physicochemical properties and water status of extruded and laminated fresh pasta. Food Chemistry, 2010, 122, 462-469.	4.2	57
53	Effect of formulation on physicochemical properties and water status of nutritionally enhanced tortillas. Journal of the Science of Food and Agriculture, 2009, 89, 73-79.	1.7	8
54	Effects of different shaping modes on physico-chemical properties and water status of fresh pasta. Journal of Food Engineering, 2009, 93, 400-406.	2.7	43

ELEONORA CARINI

#	Article	IF	CITATIONS
55	High pressure-induced tapioca starch gels: physico-chemical characterization and stability. European Food Research and Technology, 2008, 226, 889-896.	1.6	39
56	Development of Nutritionally Enhanced Tortillas. Food Biophysics, 2008, 3, 235-240.	1.4	11