
Andrew W Subudhi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2260099/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The 2018 Lake Louise Acute Mountain Sickness Score. High Altitude Medicine and Biology, 2018, 19, 4-6.	0.5	324
2	Severity of arterial hypoxaemia affects the relative contributions of peripheral muscle fatigue to exercise performance in healthy humans. Journal of Physiology, 2007, 581, 389-403.	1.3	233
3	Acute Mountain Sickness: Pathophysiology, Prevention, and Treatment. Progress in Cardiovascular Diseases, 2010, 52, 467-484.	1.6	224
4	Effects of acute hypoxia on cerebral and muscle oxygenation during incremental exercise. Journal of Applied Physiology, 2007, 103, 177-183.	1.2	219
5	Sphingosine-1-phosphate promotes erythrocyte glycolysis and oxygen release for adaptation to high-altitude hypoxia. Nature Communications, 2016, 7, 12086.	5.8	163
6	Differential blood flow responses to CO ₂ in human internal and external carotid and vertebral arteries. Journal of Physiology, 2012, 590, 3277-3290.	1.3	160
7	International Olympic Committee consensus statement on thermoregulatory and altitude challenges for high-level athletes. British Journal of Sports Medicine, 2012, 46, 770-779.	3.1	158
8	Frontal and motor cortex oxygenation during maximal exercise in normoxia and hypoxia. Journal of Applied Physiology, 2009, 106, 1153-1158.	1.2	155
9	Cerebrovascular responses to incremental exercise during hypobaric hypoxia: effect of oxygenation on maximal performance. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H164-H171.	1.5	139
10	Does â€~altitude training' increase exercise performance in elite athletes?. British Journal of Sports Medicine, 2012, 46, 792-795.	3.1	119
11	Beneficial Role of Erythrocyte Adenosine A2B Receptor–Mediated AMP-Activated Protein Kinase Activation in High-Altitude Hypoxia. Circulation, 2016, 134, 405-421.	1.6	115
12	AltitudeOmics: Red Blood Cell Metabolic Adaptation to High Altitude Hypoxia. Journal of Proteome Research, 2016, 15, 3883-3895.	1.8	98
13	AltitudeOmics: The Integrative Physiology of Human Acclimatization to Hypobaric Hypoxia and Its Retention upon Reascent. PLoS ONE, 2014, 9, e92191.	1.1	88
14	Cerebral Blood Flow at High Altitude. High Altitude Medicine and Biology, 2014, 15, 133-140.	0.5	87
15	Acute mountain sickness, inflammation, and permeability: new insights from a blood biomarker study. Journal of Applied Physiology, 2011, 111, 392-399.	1.2	85
16	Predictive validity of ventilatory and lactate thresholds for cycling time trial performance. Scandinavian Journal of Medicine and Science in Sports, 2006, 16, 27-34.	1.3	81
17	Erythrocytes retain hypoxic adenosine response for faster acclimatization upon re-ascent. Nature Communications, 2017, 8, 14108.	5.8	81
18	Does cerebral oxygen delivery limit incremental exercise performance?. Journal of Applied Physiology, 2011, 111, 1727-1734.	1.2	76

ANDREW W SUBUDHI

#	Article	IF	CITATIONS
19	AltitudeOmics: Rapid Hemoglobin Mass Alterations with Early Acclimatization to and De-Acclimatization from 5260 m in Healthy Humans. PLoS ONE, 2014, 9, e108788.	1.1	73
20	Influence of Testing Protocol on Ventilatory Thresholds and Cycling Performance. Medicine and Science in Sports and Exercise, 2004, 36, 613-622.	0.2	72
21	Effect of acute hypoxia on blood flow in vertebral and internal carotid arteries. Experimental Physiology, 2013, 98, 692-698.	0.9	72
22	An Evaluation of the Predictive Validity and Reliability of Ventilatory Threshold. Medicine and Science in Sports and Exercise, 2004, 36, 1716-1722.	0.2	64
23	Effects of Hypobaric Hypoxia on Cerebral Autoregulation. Stroke, 2010, 41, 641-646.	1.0	61
24	Adaptive remodeling of skeletal muscle energy metabolism in high-altitude hypoxia: Lessons from AltitudeOmics. Journal of Biological Chemistry, 2018, 293, 6659-6671.	1.6	57
25	Cytokine Responses at High Altitude. Medicine and Science in Sports and Exercise, 2006, 38, 276-285.	0.2	49
26	AltitudeOmics: effect of ascent and acclimatization to 5260Âm on regional cerebral oxygen delivery. Experimental Physiology, 2014, 99, 772-781.	0.9	49
27	AltitudeOmics: exercise-induced supraspinal fatigue is attenuated in healthy humans after acclimatization to high altitude. Acta Physiologica, 2014, 210, 875-888.	1.8	48
28	Cerebral spinal fluid dynamics: effect of hypoxia and implications for high-altitude illness. Journal of Applied Physiology, 2016, 120, 251-262.	1.2	46
29	Antioxidant Status and Oxidative Stress in Elite Alpine Ski Racers. International Journal of Sport Nutrition and Exercise Metabolism, 2001, 11, 32-41.	1.0	43
30	Acute hypoxia impairs dynamic cerebral autoregulation: results from two independent techniques. Journal of Applied Physiology, 2009, 107, 1165-1171.	1.2	41
31	AltitudeOmics: on the consequences of high-altitude acclimatization for the development of fatigue during locomotor exercise in humans. Journal of Applied Physiology, 2013, 115, 634-642.	1.2	40
32	The Prevalence of Subclinical Eating Disorders among Male Cyclists. Journal of the American Dietetic Association, 2007, 107, 1214-1217.	1.3	37
33	Effects of acetazolamide and dexamethasone on cerebral hemodynamics in hypoxia. Journal of Applied Physiology, 2011, 110, 1219-1225.	1.2	36
34	Exploratory proteomic analysis of hypobaric hypoxia and acute mountain sickness in humans. Journal of Applied Physiology, 2014, 116, 937-944.	1.2	36
35	Effect of FIO2 on Oxidative Stress during Interval Training at Moderate Altitude. Medicine and Science in Sports and Exercise, 2004, 36, 1888-1894.	0.2	34
36	Cerebral blood flow and oxygenation at maximal exercise: The effect of clamping carbon dioxide. Respiratory Physiology and Neurobiology, 2011, 175, 176-180.	0.7	33

#	Article	IF	CITATIONS
37	AltitudeOmics: impaired pulmonary gas exchange efficiency and blunted ventilatory acclimatization in humans with patent foramen ovale after 16 days at 5,260 m. Journal of Applied Physiology, 2015, 118, 1100-1112.	1.2	31
38	Effects of acute hypoxia on cerebrovascular responses to carbon dioxide. Experimental Physiology, 2014, 99, 849-858.	0.9	29
39	Antioxidant supplementation does not attenuate oxidative stress at high altitude. Aviation, Space, and Environmental Medicine, 2004, 75, 881-8.	0.6	29
40	AltitudeOmics: cerebral autoregulation during ascent, acclimatization, and re-exposure to high altitude and its relation with acute mountain sickness. Journal of Applied Physiology, 2014, 116, 724-729.	1.2	28
41	Bone Mineral Density of Olympic-Level Female Winter Sport Athletes. Medicine and Science in Sports and Exercise, 2004, 36, 1594-1601.	0.2	27
42	Torso Stabilization Reduces the Metabolic Cost of Producing Cycling Power. Applied Physiology, Nutrition, and Metabolism, 2005, 30, 433-441.	1.7	27
43	Postural effects on cerebral blood flow and autoregulation. Physiological Reports, 2017, 5, e13150.	0.7	25
44	Health risk for athletes at moderate altitude and normobaric hypoxia. British Journal of Sports Medicine, 2012, 46, 828-832.	3.1	23
45	AltitudeOmics: enhanced cerebrovascular reactivity and ventilatory response to CO ₂ with high-altitude acclimatization and reexposure. Journal of Applied Physiology, 2014, 116, 911-918.	1.2	23
46	Cerebral autoregulation index at high altitude assessed by thighâ€cuff and transfer function analysis techniques. Experimental Physiology, 2015, 100, 173-181.	0.9	21
47	AltitudeOmics: Baroreflex Sensitivity During Acclimatization to 5,260 m. Frontiers in Physiology, 2018, 9, 767.	1.3	21
48	Changes in Ventilatory Threshold at High Altitude. Medicine and Science in Sports and Exercise, 2006, 38, 1425-1431.	0.2	20
49	The Role of Ribose on Oxidative Stress During Hypoxic Exercise: A Pilot Study. Journal of Medicinal Food, 2009, 12, 690-693.	0.8	18
50	Inferring Cerebrovascular Changes from Latencies of Systemic and Intracranial Pulses: A Model-Based Latency Subtraction Algorithm. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 688-697.	2.4	17
51	Improving biologic predictors of cycling endurance performance with nearâ€infrared spectroscopy derived measures of skeletal muscle respiration: E pluribus unum. Physiological Reports, 2020, 8, e14342.	0.7	17
52	Effects of Purified Oxygenated Water on Exercise Performance during Acute Hypoxic Exposure. International Journal of Sport Nutrition and Exercise Metabolism, 2005, 15, 680-688.	1.0	16
53	Pediatric heart sound segmentation using Hidden Markov Model. , 2014, 2014, 5490-3.		16
54	Continuous Detection of Cerebral Vasodilatation and Vasoconstriction Using Intracranial Pulse Morphological Template Matching. PLoS ONE, 2012, 7, e50795.	1.1	16

ANDREW W SUBUDHI

#	Article	IF	CITATIONS
55	Effect of ventilation on cerebral oxygenation during exercise: Insights from canonical correlation. Respiratory Physiology and Neurobiology, 2009, 166, 125-128.	0.7	15
56	A simple method to clamp end-tidal carbon dioxide during rest and exercise. European Journal of Applied Physiology, 2012, 112, 3439-3444.	1.2	15
57	Face cooling with mist water increases cerebral blood flow during exercise: effect of changes in facial skin blood flow. Frontiers in Physiology, 2012, 3, 308.	1.3	14
58	Effect of progressive normobaric hypoxia on dynamic cerebral autoregulation. Experimental Physiology, 2016, 101, 1276-1284.	0.9	14
59	Pulmonary Edema Induced by Cerebral Hypoxic Insult in a Canine Model. Aviation, Space, and Environmental Medicine, 2008, 79, 472-478.	0.6	12
60	AltitudeOmics: effect of reduced barometric pressure on detection of intrapulmonary shunt, pulmonary gas exchange efficiency, and total pulmonary resistance. Journal of Applied Physiology, 2018, 124, 1363-1376.	1.2	10
61	AltitudeOmics: Resetting of Cerebrovascular CO2 Reactivity Following Acclimatization to High Altitude. Frontiers in Physiology, 2015, 6, 394.	1.3	9
62	An extended model of intracranial latency facilitates non-invasive detection of cerebrovascular changes. Journal of Neuroscience Methods, 2011, 197, 171-179.	1.3	6
63	Reduction in Cerebral Oxygenation After Prolonged Exercise in Hypoxia is Related to Changes in Blood Pressure. Advances in Experimental Medicine and Biology, 2016, 876, 95-100.	0.8	6
64	Commentaries on Viewpoint: Principles, insights, and potential pitfalls of the noninvasive determination of muscle oxidative capacity by near-infrared spectroscopy. Journal of Applied Physiology, 2018, 124, 249-255.	1.2	6
65	Effect of Beetroot Juice on Moderate-Intensity Exercise at a Constant Rating of Perceived Exertion. International Journal of Exercise Science, 2015, 8, 277-286.	0.5	6
66	Combined methazolamide and theophylline improves oxygen saturation but not exercise performance or altitude illness in acute hypobaric hypoxia. Experimental Physiology, 2021, 106, 117-125.	0.9	5
67	Endurance Performance at Altitude. Current Sports Medicine Reports, 2008, 7, 6-7.	0.5	1
68	AltitudeOmics: Spontaneous Baroreflex Sensitivity During Acclimatization to 5,260 m: A Comparison of Methods. Frontiers in Physiology, 2019, 10, 1505.	1.3	1
69	Response to Letter by Bailey. Stroke, 2010, 41, .	1.0	0
70	Reply. Experimental Physiology, 2017, 102, 384-384.	0.9	0
71	Supplemental Oxygen Does Not Influence Self-selected Work Rate at Moderate Altitude. Medicine and Science in Sports and Exercise, 2019, 51, 575-581.	0.2	0
72	Impairment of Cerebral Autoregulation during Hypobaric Hypoxia and Acute Mountain Sickness. Medicine and Science in Sports and Exercise, 2006, 38, S76-S77.	0.2	0

#	Article	IF	CITATIONS
73	AltitudeOmics: the effect of high altitude ascent and acclimatisation on cerebral blood flow regulation (885.1). FASEB Journal, 2014, 28, 885.1.	0.2	0
74	Effects Of Supplemental Oxygen On Submaximal And Maximal Cycling Performance At Altitude. Medicine and Science in Sports and Exercise, 2017, 49, 245.	0.2	0
75	Redefining Physiologic Predictors of Endurance Performance with Measures of Skeletal Muscle Oxygenation: E pluribus unum. Medicine and Science in Sports and Exercise, 2019, 51, 77-78.	0.2	0