List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2259926/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Local Energy Dissipation Rate Preserving Approximations to Driven Gradient Flows with Applications to Graphene Growth. Journal of Scientific Computing, 2022, 90, 1.	2.3	0
2	Multisymplectic structure-preserving scheme for the coupled Gross–Pitaevskii equations. International Journal of Computer Mathematics, 2021, 98, 783-806.	1.8	1
3	On the L â^ž convergence of a conservative Fourier pseudoâ€spectral method for the space fractional nonlinear Schrödinger equation. Numerical Methods for Partial Differential Equations, 2021, 37, 1591-1611.	3.6	5
4	Explicit high-order energy-preserving methods for general Hamiltonian partial differential equations. Journal of Computational and Applied Mathematics, 2021, 388, 113298.	2.0	9
5	Arbitrarily high-order structure-preserving schemes for the Gross–Pitaevskii equation with angular momentum rotation. Computer Physics Communications, 2021, 261, 107767.	7.5	13
6	Local structure-preserving algorithms for the molecular beam epitaxy model with slope selection. Discrete and Continuous Dynamical Systems - Series B, 2021, 26, 4745.	0.9	0
7	An efficient energy-preserving method for the two-dimensional fractional SchrĶdinger equation. Applied Numerical Mathematics, 2021, 165, 232-247.	2.1	7
8	The exponential invariant energy quadratization approach for general multi-symplectic Hamiltonian PDEs. Journal of Computational and Applied Mathematics, 2021, , 113955.	2.0	0
9	Optimal error estimate of two linear and momentumâ€preserving Fourier pseudoâ€spectral schemes for the RLW equation. Numerical Methods for Partial Differential Equations, 2020, 36, 394-417.	3.6	4
10	An SDG Galerkin structureâ€preserving scheme for the Kleinâ€Cordonâ€Schrödinger equation. Mathematical Methods in the Applied Sciences, 2020, 43, 6011-6030.	2.3	0
11	A linearly implicit structure-preserving Fourier pseudo-spectral scheme for the damped nonlinear SchrĶdinger equation in three dimensions. Advances in Computational Mathematics, 2020, 46, 1.	1.6	1
12	A linearly implicit energy-preserving exponential integrator for the nonlinear Klein-Gordon equation. Journal of Computational Physics, 2020, 419, 109690.	3.8	25
13	A Linearly Implicit Structure-Preserving Scheme for the Camassa–Holm Equation Based on Multiple Scalar Auxiliary Variables Approach. Journal of Scientific Computing, 2020, 83, 1.	2.3	16
14	A Linearly Implicit and Local Energy-Preserving Scheme for the Sine-Gordon Equation Based on the Invariant Energy Quadratization Approach. Journal of Scientific Computing, 2019, 80, 1629-1655.	2.3	47
15	Local structure-preserving algorithms for general multi-symplectic Hamiltonian PDEs. Computer Physics Communications, 2019, 235, 210-220.	7.5	9
16	A novel energy-preserving scheme for the coupled nonlinear Schrödinger equations. International Journal of Computer Mathematics, 2018, 95, 61-81.	1.8	5
17	A new local energy-preserving algorithm for the BBM equation. Applied Mathematics and Computation, 2018, 324, 119-130.	2.2	9
18	Optimal error estimate of a conformal Fourier pseudoâ€spectral method for the damped nonlinear SchrĶdinger equation. Numerical Methods for Partial Differential Equations, 2018, 34, 1422-1454.	3.6	9

#	Article	IF	CITATIONS
19	Numerical analysis of a new conservative scheme for the coupled nonlinear SchrĶdinger equations. International Journal of Computer Mathematics, 2018, 95, 1583-1608.	1.8	10
20	Local discontinuous Galerkin methods based on the multisymplectic formulation for two kinds of Hamiltonian PDEs. International Journal of Computer Mathematics, 2018, 95, 114-143.	1.8	5
21	Analysis of a Fourier pseudo-spectral conservative scheme for the Klein–Gordon–Schrödinger equation. International Journal of Computer Mathematics, 2018, 95, 36-60.	1.8	3
22	Optimal error estimate of a linear Fourier pseudo-spectral scheme for two dimensional Klein–Gordon–Schrödinger equations. Journal of Mathematical Analysis and Applications, 2018, 468, 817-838.	1.0	21
23	An energy-preserving Crank–Nicolson Galerkin spectral element method for the two dimensional nonlinear Schrödinger equation. Journal of Computational and Applied Mathematics, 2018, 344, 245-258.	2.0	13
24	Efficient local energy dissipation preserving algorithms for the Cahn–Hilliard equation. Journal of Computational Physics, 2018, 374, 654-667.	3.8	7
25	An averaged vector field Legendre spectral element method for the nonlinear Schrödinger equation. International Journal of Computer Mathematics, 2017, 94, 1196-1218.	1.8	6
26	Local energy―and momentumâ€preserving schemes for Kleinâ€Gordonâ€Schrödinger equations and convergence analysis. Numerical Methods for Partial Differential Equations, 2017, 33, 1329-1351.	3.6	3
27	Dissipation-preserving spectral element method for damped seismic wave equations. Journal of Computational Physics, 2017, 350, 260-279.	3.8	5
28	Two New Energy-Preserving Algorithms for Generalized Fifth-Order KdV Equation. Advances in Applied Mathematics and Mechanics, 2017, 9, 1206-1224.	1.2	3
29	A conservative Fourier pseudo-spectral method for the nonlinear SchrĶdinger equation. Journal of Computational Physics, 2017, 328, 354-370.	3.8	106
30	GPU-accelerated preconditioned GMRES method for two-dimensional Maxwell's equations. International Journal of Computer Mathematics, 2017, 94, 2122-2144.	1.8	13
31	Novel Symplectic Discrete Singular Convolution Method for Hamiltonian PDEs. Communications in Computational Physics, 2016, 19, 1375-1396.	1.7	2
32	A discrete line integral method of order two for the Lorentz force system. Applied Mathematics and Computation, 2016, 291, 207-212.	2.2	6
33	An Energy-Preserving Wavelet Collocation Method for General Multi-Symplectic Formulations of Hamiltonian PDEs. Communications in Computational Physics, 2016, 20, 1313-1339.	1.7	11
34	Derivation of the multisymplectic Crank–Nicolson scheme for the nonlinear Schrödinger equation. Computer Physics Communications, 2014, 185, 2403-2411.	7.5	2
35	Some new structure-preserving algorithms for general multi-symplectic formulations of Hamiltonian PDEs. Journal of Computational Physics, 2014, 279, 80-102.	3.8	67
36	Multi-Symplectic Fourier Pseudospectral Method for the Kawahara Equation. Communications in Computational Physics, 2014, 16, 35-55.	1.7	43

#	Article	IF	CITATIONS
37	Local energy-preserving and momentum-preserving algorithms for coupled nonlinear Schr¶dinger system. Journal of Computational Physics, 2013, 239, 30-50.	3.8	44
38	Local structure-preserving algorithms for the "good―Boussinesq equation. Journal of Computational Physics, 2013, 239, 72-89.	3.8	30
39	Numerical dispersion analysis of a multi-symplectic scheme for the three dimensional Maxwell's equations. Journal of Computational Physics, 2013, 234, 330-352.	3.8	10
40	Numerical analysis of a multi-symplectic scheme for the time-domain Maxwell's equations. Journal of Mathematical Physics, 2011, 52, 123701.	1.1	4
41	Legendre Polynomials Spectral Approximation for the Infinite-Dimensional Hamiltonian Systems. Mathematical Problems in Engineering, 2011, 2011, 1-13.	1.1	0
42	Multi-symplectic Birkhoffian structure for PDEs with dissipation terms. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 2410-2416.	2.1	11
43	New schemes for the coupled nonlinear SchrĶdinger equation. International Journal of Computer Mathematics, 2010, 87, 775-787.	1.8	23
44	Multisymplectic Preissman scheme for the time-domain Maxwell's equations. Journal of Mathematical Physics, 2009, 50, 033510.	1.1	14
45	Applications of the Multi-Symplectic Euler-box Scheme. , 2009, , .		0
46	A new parallel genetic algorithm for solving multiobjective scheduling problems subjected to special process constraint. International Journal of Advanced Manufacturing Technology, 2009, 43, 151-160.	3.0	33
47	Local structure-preserving algorithms for partial differential equations. Science in China Series A: Mathematics, 2008, 51, 2115-2136.	0.5	41
48	Multi-objective scheduling problems subjected to special process constraint. , 2008, , .		4
49	An Explicit Scheme for the KdV Equation. Chinese Physics Letters, 2008, 25, 2335-2338.	3.3	12
50	Research on immune genetic algorithm for solving bi-objective scheduling problems subjected to special process constraint. , 2008, , .		0
51	Multisymplectic Euler Box Scheme for the KdV Equation. Chinese Physics Letters, 2007, 24, 312-314.	3.3	21
52	New multisymplectic self-adjoint scheme and its composition scheme for the time-domain Maxwell's equations. Journal of Mathematical Physics, 2006, 47, 123508.	1.1	16
53	On multi-symplectic partitioned Runge–Kutta methods for Hamiltonian wave equations. Applied Mathematics and Computation, 2006, 177, 36-43.	2.2	9
54	On multisymplectic integrators based on Runge–Kutta–Nyström methods for Hamiltonian wave equations. Applied Mathematics and Computation, 2006, 182, 1056-1063.	2.2	2

#	Article	IF	CITATIONS
55	A new multisymplectic scheme for generalized Kadomtsev-Petviashvili equation. Journal of Mathematical Physics, 2006, 47, 083503.	1.1	3
56	High-order multi-symplectic schemes for the nonlinear Klein–Gordon equation. Applied Mathematics and Computation, 2005, 166, 608-632.	2.2	26
57	An Artificial Boundary Condition for the Multisymplectic Preissman Scheme. Journal of the Physical Society of Japan, 2004, 73, 1457-1463.	1.6	1
58	Numerical implementation of the multisymplectic Preissman scheme and its equivalent schemes. Applied Mathematics and Computation, 2004, 149, 299-326.	2.2	20
59	Concatenating construction of the multisymplectic schemes for 2+1-dimensional sine-Gordon equation. Science in China Series A: Mathematics, 2004, 41, 18.	0.5	5
60	Multisymplectic five-point scheme for the nonlinear wave equation. Science Bulletin, 2004, 48, 24.	1.7	2
61	High Order Symplectic Schemes for the Sine-Gordon Equation*. Journal of the Physical Society of Japan, 2003, 72, 2731-2736.	1.6	8
62	Multisymplectic Geometry and Multisymplectic Scheme for the Nonlinear Klein Gordon Equation. Journal of the Physical Society of Japan, 2001, 70, 653-661.	1.6	17