
## Jinsung Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2259429/publications.pdf Version: 2024-02-01



INSUNC MANC

| #  | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | The nature of savings associated with a visuomotor adaptation task that involves one arm or both<br>arms. Human Movement Science, 2022, 81, 102896.                                                                      | 1.4 | 3         |
| 2  | The decay and consolidation of effector-independent motor memories. Scientific Reports, 2022, 12, 3131.                                                                                                                  | 3.3 | 4         |
| 3  | Facilitative effects of use-dependent learning on interlimb transfer of visuomotor adaptation in a person with congenital mirror movements. Human Movement Science, 2022, 84, 102973.                                    | 1.4 | 1         |
| 4  | Lack of changes in motor function of the brain in healthy older adults after participation in a cognitive walking program. Journal of Exercise Rehabilitation, 2022, 18, 187-195.                                        | 1.0 | 0         |
| 5  | Lack of interlimb transfer following visuomotor adaptation in a person with congenital mirror movements despite the awareness of the visuomotor perturbation. Brain and Cognition, 2021, 147, 105653.                    | 1.8 | 3         |
| 6  | The Beneficial Effects of Cognitive Walking Program on Improving Cognitive Function and Physical Fitness in Older Adults. Healthcare (Switzerland), 2021, 9, 419.                                                        | 2.0 | 5         |
| 7  | Interlimb differences in visuomotor and dynamic adaptation during targeted reaching in children.<br>Human Movement Science, 2021, 77, 102788.                                                                            | 1.4 | 3         |
| 8  | The role of eye movements, attention, and hand movements on age-related differences in pegboard tests. Journal of Neurophysiology, 2021, 126, 1710-1722.                                                                 | 1.8 | 6         |
| 9  | Lack of interlimb transfer following visuomotor adaptation in a person with congenital mirror movements. Neuropsychologia, 2020, 136, 107265.                                                                            | 1.6 | 5         |
| 10 | Consolidation of use-dependent motor memories induced by passive movement training. Neuroscience<br>Letters, 2020, 732, 135080.                                                                                          | 2.1 | 7         |
| 11 | Direct-effects and after-effects of dynamic adaptation on intralimb and interlimb transfer. Human<br>Movement Science, 2019, 65, 102-110.                                                                                | 1.4 | 4         |
| 12 | Lack of generalization between explicit and implicit visuomotor learning. PLoS ONE, 2019, 14, e0224099.                                                                                                                  | 2.5 | 14        |
| 13 | Divided attention during cutting influences lower extremity mechanics in female athletes. Sports<br>Biomechanics, 2019, 18, 264-276.                                                                                     | 1.6 | 26        |
| 14 | The effect of proprioceptive acuity variability on motor adaptation in older adults. Experimental Brain<br>Research, 2018, 236, 599-608.                                                                                 | 1.5 | 15        |
| 15 | Experiencing a reaching task passively with one arm while adapting to a visuomotor rotation with the other can lead to substantial transfer of motor learning across the arms. Neuroscience Letters, 2017, 638, 109-113. | 2.1 | 17        |
| 16 | Enhancing Generalization of Visuomotor Adaptation by Inducing Use-dependent Learning.<br>Neuroscience, 2017, 366, 184-195.                                                                                               | 2.3 | 16        |
| 17 | A positive association between active lifestyle and hemispheric lateralization for motor control and<br>learning in older adults. Behavioural Brain Research, 2016, 314, 38-44.                                          | 2.2 | 12        |
| 18 | The combined effects of action observation and passive proprioceptive training on adaptive motor learning. Neuroscience, 2016, 331, 91-98.                                                                               | 2.3 | 15        |

JINSUNG WANG

| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Direct-effects and after-effects of visuomotor adaptation with one arm on subsequent performance with the other arm. Journal of Neurophysiology, 2015, 114, 468-473.                                                    | 1.8 | 19        |
| 20 | Performing a reaching task with one arm while adapting to a visuomotor rotation with the other can<br>lead to complete transfer of motor learning across the arms. Journal of Neurophysiology, 2015, 113,<br>2302-2308. | 1.8 | 26        |
| 21 | Prolonged training does not result in a greater extent of interlimb transfer following visuomotor adaptation. Brain and Cognition, 2014, 91, 95-99.                                                                     | 1.8 | 21        |
| 22 | Separation of visual and motor workspaces during targeted reaching results in limited generalization of visuomotor adaptation. Neuroscience Letters, 2013, 541, 243-247.                                                | 2.1 | 8         |
| 23 | Substantial Generalization of Sensorimotor Learning from Bilateral to Unilateral Movement Conditions. PLoS ONE, 2013, 8, e58495.                                                                                        | 2.5 | 12        |
| 24 | Transfer of short-term motor learning across the lower limbs as a function of task conception and practice order. Brain and Cognition, 2011, 77, 271-279.                                                               | 1.8 | 25        |
| 25 | Aging reduces asymmetries in interlimb transfer of visuomotor adaptation. Experimental Brain Research, 2011, 210, 283-290.                                                                                              | 1.5 | 60        |
| 26 | The extent of interlimb transfer following adaptation to a novel visuomotor condition does not depend on awareness of the condition. Journal of Neurophysiology, 2011, 106, 259-264.                                    | 1.8 | 50        |
| 27 | Visuomotor Learning Generalizes Between Bilateral and Unilateral Conditions Despite Varying<br>Degrees of Bilateral Interference. Journal of Neurophysiology, 2010, 104, 2913-2921.                                     | 1.8 | 8         |
| 28 | Generalization of Visuomotor Learning Between Bilateral and Unilateral Conditions. Journal of Neurophysiology, 2009, 102, 2790-2799.                                                                                    | 1.8 | 24        |
| 29 | A dissociation between visual and motor workspace inhibits generalization of visuomotor adaptation across the limbs. Experimental Brain Research, 2008, 187, 483-490.                                                   | 1.5 | 18        |
| 30 | The dominant and nondominant arms are specialized for stabilizing different features of task performance. Experimental Brain Research, 2007, 178, 565-570.                                                              | 1.5 | 150       |
| 31 | Altered coordination patterns in parkinsonian patients during trunk-assisted prehension.<br>Parkinsonism and Related Disorders, 2006, 12, 211-222.                                                                      | 2.2 | 9         |
| 32 | The symmetry of interlimb transfer depends on workspace locations. Experimental Brain Research, 2006, 170, 464-471.                                                                                                     | 1.5 | 51        |
| 33 | Interlimb transfer of visuomotor rotations depends on handedness. Experimental Brain Research, 2006, 175, 223-230.                                                                                                      | 1.5 | 83        |
| 34 | Adaptation to Visuomotor Rotations Remaps Movement Vectors, Not Final Positions. Journal of Neuroscience, 2005, 25, 4024-4030.                                                                                          | 3.6 | 99        |
| 35 | Interlimb Transfer of Novel Inertial Dynamics Is Asymmetrical. Journal of Neurophysiology, 2004, 92, 349-360.                                                                                                           | 1.8 | 147       |
| 36 | Limitations in interlimb transfer of visuomotor rotations. Experimental Brain Research, 2004, 155, 1-8.                                                                                                                 | 1.5 | 81        |

JINSUNG WANG

| #  | Article                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Mechanisms underlying interlimb transfer of visuomotor rotations. Experimental Brain Research, 2003, 149, 520-526.                                                              | 1.5 | 122       |
| 38 | Interlimb transfer of visuomotor rotations: independence of direction and final position information. Experimental Brain Research, 2002, 145, 437-447.                          | 1.5 | 317       |
| 39 | Spatial and temporal control of trunk-assisted prehensile actions. Experimental Brain Research, 2001, 136, 231-240.                                                             | 1.5 | 36        |
| 40 | Temporal and Spatial Relationship between Reaching and Grasping. Commentary on "A New View on<br>Grasping― Motor Control, 1999, 3, 307-311.                                     | 0.6 | 1         |
| 41 | Coordination among the body segments during reach-to-grasp action involving the trunk.<br>Experimental Brain Research, 1998, 123, 346-350.                                      | 1.5 | 69        |
| 42 | A meta-analysis on cognitive slowing in Parkinson's disease: are simple and choice reaction times differentially impaired?. Parkinsonism and Related Disorders, 1998, 4, 17-29. | 2.2 | 22        |