Shigeru Kuratani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2259135/publications.pdf

Version: 2024-02-01

225 papers 11,506 citations

59 h-index 94 g-index

247 all docs

247 docs citations

times ranked

247

7187 citing authors

#	Article	IF	CITATIONS
1	Mouse Otx2 functions in the formation and patterning of rostral head Genes and Development, 1995, 9, 2646-2658.	2.7	633
2	The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan. Nature Genetics, 2013, 45, 701-706.	9.4	409
3	Timing of Genome Duplications Relative to the Origin of the Vertebrates: Did Cyclostomes Diverge before or after?. Molecular Biology and Evolution, 2008, 26, 47-59.	3 . 5	281
4	Comparative transcriptome analysis reveals vertebrate phylotypic period during organogenesis. Nature Communications, 2011, 2, 248.	5.8	256
5	A Novel Transgenic Technique That Allows Specific Marking of the Neural Crest Cell Lineage in Mice. Developmental Biology, 1999, 212, 191-203.	0.9	252
6	Evolution of the vertebral formulae in mammals: A perspective on developmental constraints. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2005, 304B, 91-106.	0.6	207
7	Shark genomes provide insights into elasmobranch evolution and the origin of vertebrates. Nature Ecology and Evolution, 2018, 2, 1761-1771.	3.4	197
8	Time Scale for Cyclostome Evolution Inferred with a Phylogenetic Diagnosis of Hagfish and Lamprey cDNA Sequences. Zoological Science, 2006, 23, 1053-1064.	0.3	196
9	Hagfish embryology with reference to the evolution of the neural crest. Nature, 2007, 446, 672-675.	13.7	182
10	An eye on the head: the development and evolution of craniofacial muscles. Development (Cambridge), 2011, 138, 2401-2415.	1,2	177
11	Identification and expression of the lamprey <i>Pax6</i> gene: evolutionary origin of the segmented brain of vertebrates. Development (Cambridge), 2001, 128, 3521-3531.	1.2	176
12	Heterotopic Shift of Epithelial-Mesenchymal Interactions in Vertebrate Jaw Evolution. Science, 2002, 296, 1316-1319.	6.0	166
13	Expression pattern of the Kallmann syndrome gene in the olfactory system suggests a role in neuronal targeting. Nature Genetics, 1993, 4, 19-26.	9.4	158
14	Development of Cephalic Neural Crest Cells in Embryos of Lampetra japonica, with Special Reference to the Evolution of the Jaw. Developmental Biology, 1999, 207, 287-308.	0.9	146
15	Spatiotemporal expression patterns of chicken ovalbumin upstream promoter-transcription factors in the developing mouse central nervous system: evidence for a role in segmental patterning of the diencephalon Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 4451-4455.	3.3	145
16	Evolution of the brain developmental plan: Insights from agnathans. Developmental Biology, 2005, 280, 249-259.	0.9	140
17	Normal Embryonic Stages of the Chinese Softshelled Turtle Pelodiscus sinensis (Trionychidae). Zoological Science, 2001, 18, 705-715.	0.3	134
18	Craniofacial development of hagfishes and the evolution of vertebrates. Nature, 2013, 493, 175-180.	13.7	126

#	Article	IF	CITATIONS
19	Ectodermally Derived FGF8 Defines the Maxillomandibular Region in the Early Chick Embryo: Epithelial–Mesenchymal Interactions in the Specification of the Craniofacial Ectomesenchyme. Developmental Biology, 2000, 228, 73-85.	0.9	125
20	Highly conserved linkage homology between birds and turtles: Bird and turtle chromosomes are precise counterparts of each other. Chromosome Research, 2005, 13, 601-615.	1.0	125
21	Evolution of the Turtle Body Plan by the Folding and Creation of New Muscle Connections. Science, 2009, 325, 193-196.	6.0	123
22	The Expression Pattern of the Chick Homeobox Gene gMHox Suggests a Role in Patterning of the Limbs and Face and in Compartmentalization of Somites. Developmental Biology, 1994, 161, 357-369.	0.9	120
23	Initial migration and distribution of the cardiac neural crest in the avian embryo: An introduction to the concept of the circumpharyngeal crest. American Journal of Anatomy, 1991, 191, 215-227.	0.9	119
24	Developmental Morphology of the Head Mesoderm and Reevaluation of Segmental Theories of the Vertebrate Head: Evidence from Embryos of an Agnathan Vertebrate, Lampetra japonica. Developmental Biology, 1999, 210, 381-400.	0.9	116
25	The developmental hourglass model: a predictor of the basic body plan?. Development (Cambridge), 2014, 141, 4649-4655.	1.2	116
26	Comprehensive survey of carapacial ridge-specific genes in turtle implies co-option of some regulatory genes in carapace evolution. Evolution & Development, 2005, 7, 3-17.	1.1	108
27	Segmental development of reticulospinal and branchiomotor neurons in lamprey: insights into the evolution of the vertebrate hindbrain. Development (Cambridge), 2004, 131, 983-995.	1.2	104
28	Evidence from cyclostomes for complex regionalization of the ancestral vertebrate brain. Nature, 2016, 531, 97-100.	13.7	102
29	Lamprey as an evo-devo model: Lessons from comparative embryology and molecular phylogenetics. Genesis, 2002, 34, 175-183.	0.8	101
30	Peripheral development of cranial nerves in a cyclostome, Lampetra japonica: morphological distribution of nerve branches and the vertebrate body plan., 1997, 384, 483-500.		100
31	Developmental patterning and evolution of the mammalian viscerocranium: Genetic insights into comparative morphology., 1997, 209, 139-155.		99
32	Embryology of the lamprey and evolution of the vertebrate jaw: insights from molecular and developmental perspectives. Philosophical Transactions of the Royal Society B: Biological Sciences, 2001, 356, 1615-1632.	1.8	97
33	Lamprey Hox genes and the evolution of jaws. Nature, 2004, 429, 622-622.	13.7	96
34	Craniofacial Development and the Evolution of the Vertebrates: the Old Problems on a New Background. Zoological Science, 2005, 22, 1-19.	0.3	95
35	Inference of the Protokaryotypes of Amniotes and Tetrapods and the Evolutionary Processes of Microchromosomes from Comparative Gene Mapping. PLoS ONE, 2012, 7, e53027.	1.1	94
36	Thoracolumbar vertebral number: The first skeletal synapomorphy for afrotherian mammals. Systematics and Biodiversity, 2007, 5, 1-7.	0.5	91

#	Article	IF	CITATIONS
37	Identification of vertebra-like elements and their possible differentiation from sclerotomes in the hagfish. Nature Communications, 2011, 2, 373.	5.8	90
38	Evolution of Hoxgene clusters in deuterostomes. BMC Developmental Biology, 2013, 13, 26.	2.1	90
39	Conserved relative timing of cranial ossification patterns in early mammalian evolution. Evolution & Development, 2008, 10, 519-530.	1.1	87
40	Evolution of the vertebrate skeleton: morphology, embryology, and development. Zoological Letters, 2015, 1, 2.	0.7	86
41	Evolution of the vertebrate jaw: comparative embryology and molecular developmental biology reveal the factors behind evolutionary novelty. Journal of Anatomy, 2004, 205, 335-347.	0.9	81
42	Hox gene expression patterns in Lethenteron japonicum embryos—Insights into the evolution of the vertebrate Hox code. Developmental Biology, 2007, 308, 606-620.	0.9	80
43	Isolation ofDlx andEmx gene cognates in an agnathan species,Lampetra japonica, and their expression patterns during embryonic and larval development: Conserved and diversified regulatory patterns of homeobox genes in vertebrate head evolution. The Journal of Experimental Zoology, 2001, 291, 68-84.	1.4	79
44	Evolution and developmental patterning of the vertebrate skeletal muscles: Perspectives from the lamprey. Developmental Dynamics, 2005, 234, 824-834.	0.8	78
45	Evolution of oropharyngeal patterning mechanisms involving Dlx and endothelins in vertebrates. Developmental Biology, 2010, 341, 315-323.	0.9	76
46	Spatial distribution of postotic crest cells defines the head/trunk interface of the vertebrate body: embryological interpretation of peripheral nerve morphology and evolution of the vertebrate head. Anatomy and Embryology, 1996, 195, 1-13.	1.5	75
47	Development of the adenohypophysis in the lamprey: Evolution of epigenetic patterning programs in organogenesis. The Journal of Experimental Zoology, 2003, 300B, 32-47.	1.4	75
48	Skeletal development in the Chinese softâ€shelled turtle <i>Pelodiscus sinensis</i> (Testudines:) Tj ETQq0 0 0 rg	zBT/Qverlo	ock 10 Tf 50 3
49	History of studies on mammalian middle ear evolution: A comparative morphological and developmental biology perspective. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2010, 314B, 417-433.	0.6	72
50	Constrained vertebrate evolution by pleiotropic genes. Nature Ecology and Evolution, 2017, 1 , 1722-1730.	3.4	72
51	Evolution of the vertebrate jaw from developmental perspectives. Evolution & Development, 2012, 14, 76-92.	1.1	69
52	Pax1/Pax9-Related Genes in an Agnathan Vertebrate, Lampetra japonica: Expression Pattern of LjPax9 Implies Sequential Evolutionary Events toward the Gnathostome Body Plan. Developmental Biology, 2000, 223, 399-410.	0.9	68
53	Otx cognates in a lamprey, Lampetra japonica. Development Genes and Evolution, 1998, 208, 223-228.	0.4	67
54	The endoskeletal origin of the turtle carapace. Nature Communications, 2013, 4, 2107.	5.8	67

#	Article	IF	CITATIONS
55	Migration and distribution of circumpharyngeal crest cells in the chick embryo. The Anatomical Record, 1992, 234, 263-280.	2.3	64
56	Developmental Morphology of Branchiomeric Nerves in a Cat Shark, Scyliorhinus torazame, with Special Reference to Rhombomeres, Cephalic Mesoderm, and Distribution Patterns of Cephalic Crest Cells. Zoological Science, 2000, 17, 893-909.	0.3	64
57	Developmental genetic bases behind the independent origin of the tympanic membrane in mammals and diapsids. Nature Communications, 2015, 6, 6853.	5 . 8	64
58	Expression of Thyroid transcription factor-1 (TTF-1) gene in the ventral forebrain and endostyle of the agnathan vertebrate, Lampetra japonica. Genesis, 2001, 30, 51-58.	0.8	63
59	On the carapacial ridge in turtle embryos: its developmental origin, function and the chelonian body plan. Development (Cambridge), 2007, 134, 2219-2226.	1.2	63
60	Early development of the hypoglossal nerve in the chick embryo as observed by the whole-mount nerve staining method. American Journal of Anatomy, 1988, 182, 155-168.	0.9	61
61	Developmental fate of the mandibular mesoderm in the lamprey,Lethenteron japonicum: Comparative morphology and development of the gnathostome jaw with special reference to the nature of the trabecula cranii. The Journal of Experimental Zoology, 2004, 302B, 458-468.	1.4	61
62	Involvement of Hedgehog and FGF signalling in the lamprey telencephalon: evolution of regionalization and dorsoventral patterning of the vertebrate forebrain. Development (Cambridge), 2011, 138, 1217-1226.	1.2	61
63	Stereotyped axonal bundle formation and neuromeric patterns in embryos of a cyclostome,Lampetra japonica., 1998, 391, 99-114.		60
64	Expression and interaction of muscle-related genes in the lamprey imply the evolutionary scenario for vertebrate skeletal muscle, in association with the acquisition of the neck and fins. Developmental Biology, 2011, 350, 217-227.	0.9	59
65	A new evolutionary scenario for the vertebrate jaw. BioEssays, 2005, 27, 331-338.	1.2	58
66	The History of Scientific Endeavors Towards Understanding Hagfish Embryology. Zoological Science, 2006, 23, 403-418.	0.3	58
67	Evolutionary developmental perspective for the origin of turtles: the folding theory for the shell based on the developmental nature of the carapacial ridge. Evolution & Development, 2011, 13, 1-14.	1.1	57
68	Development and evolution of the lateral plate mesoderm: Comparative analysis of amphioxus and lamprey with implications for the acquisition of paired fins. Developmental Biology, 2011, 359, 124-136.	0.9	57
69	Modularity, comparative embryology and evo-devo: Developmental dissection of evolving body plans. Developmental Biology, 2009, 332, 61-69.	0.9	56
70	Otx1 function overlaps with Otx2 in development of mouse forebrain and midbrain. Genes To Cells, 1996, 1, 1031-1044.	0.5	55
71	Hagfish and lamprey Hox genes reveal conservation of temporal colinearity in vertebrates. Nature Ecology and Evolution, 2018, 2, 859-866.	3.4	55
72	Expression of the Kallmann syndrome gene in human fetal brain and in the manipulated chick embryo. Human Molecular Genetics, 1994, 3, 1717-1723.	1.4	53

#	Article	IF	CITATIONS
73	Cranial anomaly of homozygous rSey rat is associated with a defect in the migration pathway of midbrain crest cells. Development Growth and Differentiation, 1997, 39, 53-67.	0.6	52
74	The evolutionary origins of chordate hematopoiesis and vertebrate endothelia. Developmental Biology, 2013, 375, 182-192.	0.9	52
75	Reconstructing the ancestral vertebrate brain. Development Growth and Differentiation, 2017, 59, 163-174.	0.6	51
76	Regionâ€specific expression of murineHoxgenes implies theHoxcodeâ€mediated patterning of the digestive tract. Genes To Cells, 1998, 3, 51-64.	0.5	50
77	Developmental and evolutionary significance of the mandibular arch and prechordal/premandibular cranium in vertebrates: revising the heterotopy scenario of gnathostome jaw evolution. Journal of Anatomy, 2013, 222, 41-55.	0.9	48
78	Evolutionary perspectives from development of mesodermal components in the lamprey. Developmental Dynamics, 2007, 236, 2410-2420.	0.8	47
79	Evolutionary developmental biology and vertebrate head segmentation: A perspective from developmental constraint. Theory in Biosciences, 2003, 122, 230-251.	0.6	46
80	Broken colinearity of the amphioxus Hox cluster. EvoDevo, 2012, 3, 28.	1.3	46
81	Alternate expression of the HNK-1 epitope in rhombomeres of the chick embryo. Developmental Biology, 1991, 144, 215-219.	0.9	45
82	Hox code in embryos of Chinese soft-shelled turtlePelodiscus sinensis correlates with the evolutionary innovation in the turtle. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2005, 304B, 107-118.	0.6	45
83	Noncanonical role of Hox14 revealed by its expression patterns in lamprey and shark. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6679-6683.	3.3	45
84	cDNA-based gene mapping and GC3 profiling in the soft-shelled turtle suggest a chromosomal size-dependent GC bias shared by sauropsids. Chromosome Research, 2006, 14, 187-202.	1.0	44
85	A new scenario of the evolutionary derivation of the mammalian diaphragm from shoulder muscles. Journal of Anatomy, 2013, 222, 504-517.	0.9	44
86	Inner ear development in cyclostomes and evolution of the vertebrate semicircular canals. Nature, 2019, 565, 347-350.	13.7	44
87	Turtle-chicken chimera: An experimental approach to understanding evolutionary innovation in the turtle. Developmental Dynamics, 2005, 232, 149-161.	0.8	42
88	Rostral truncation of a cyclostome, Lampetra japonica, induced by all-trans retinoic acid defines the head/trunk interface of the vertebrate body., 1998, 211, 35-51.		40
89	Cephalic neural crest cells and the evolution of craniofacial structures in vertebrates: morphological and embryological significance of the premandibular–mandibular boundary. Zoology, 2005, 108, 13-25.	0.6	40
90	Expression of Sox and fibrillar collagen genes in lamprey larval chondrogenesis with implications for the evolution of vertebrate cartilage. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2008, 310B, 596-607.	0.6	40

#	Article	IF	CITATIONS
91	Evolutionary developmental studies of cyclostomes and the origin of the vertebrate neck. Development Growth and Differentiation, 2008, 50, S189-94.	0.6	40
92	Evolution and Development of Ventricular Septation in the Amniote Heart. PLoS ONE, 2014, 9, e106569.	1.1	40
93	Anatomical integration of the sacral–hindlimb unit coordinated by GDF11 underlies variation in hindlimb positioning in tetrapods. Nature Ecology and Evolution, 2017, 1, 1392-1399.	3.4	40
94	Developmental studies of the lamprey and hierarchical evolutionary steps towards the acquisition of the jaw. Journal of Anatomy, 2005, 207, 489-499.	0.9	39
95	Competent stripes for diverse positions of limbs/fins in gnathostome embryos. Evolution & Development, 2008, 10, 737-745.	1.1	39
96	Development of head and trunk mesoderm in the dogfish, <i><scp>S</scp>cyliorhinus torazame</i> : I. Embryology and morphology of the head cavities and related structures. Evolution & Development, 2012, 14, 234-256.	1.1	39
97	Body wall development in lamprey and a new perspective on the origin of vertebrate paired fins. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11899-11904.	3.3	39
98	Mechanisms of heart development in the Japanese lamprey, <i>Lethenteron japonicum</i> . Evolution & Development, 2010, 12, 34-44.	1.1	38
99	Development of the head and trunk mesoderm in the dogfish, <i>Scyliorhinus torazame</i> : II. Comparison of gene expression between the head mesoderm and somites with reference to the origin of the vertebrate head. Evolution & Development, 2012, 14, 257-276.	1.1	37
100	Development of the Chondrocranium in Hagfishes, with Special Reference to the Early Evolution of Vertebrates. Zoological Science, 2013, 30, 944.	0.3	37
101	Peripheral development of avian trigeminal nerves. American Journal of Anatomy, 1990, 187, 65-80.	0.9	36
102	Amphioxus mouth after dorso-ventral inversion. Zoological Letters, 2016, 2, 2.	0.7	35
103	Evolution of the vertebrate neurocranium: problems of the premandibular domain and theÂorigin of theÂtrabecula. Zoological Letters, 2018, 4, 1.	0.7	35
104	cimp1, A Novel Astacin Family Metalloproteinase Gene from East African Cichlids, Is Differentially Expressed Between Species During Growth. Molecular Biology and Evolution, 2005, 22, 1649-1660.	3.5	34
105	Body plan of turtles: an anatomical, developmental and evolutionary perspective. Anatomical Science International, 2012, 87, 1-13.	0.5	34
106	The Dlx genes as clues to vertebrate genomics and craniofacial evolution. Seminars in Cell and Developmental Biology, 2013, 24, 110-118.	2.3	34
107	Peripheral development of the avian vagus nerve with special reference to the morphological innervation of heart and lung. Anatomy and Embryology, 1990, 182, 435-45.	1.5	33
108	Identification of four <i>Engrailed</i> genes in the Japanese lamprey, <i>Lethenteron japonicum</i> Developmental Dynamics, 2008, 237, 1581-1589.	0.8	33

#	Article	IF	Citations
109	Overlapping origins of pharyngeal arch crest cells on the postotic hind-brain. Development Growth and Differentiation, 1995, 37, 733-746.	0.6	32
110	Morphological Characteristics of the Developing Cranial Nerves and Mesodermal Head Cavities in Sturgeon Embryos from Early Pharyngula to Late Larval Stages. Zoological Science, 2000, 17, 911-933.	0.3	32
111	Dual origins of the prechordal cranium in the chicken embryo. Developmental Biology, 2011, 356, 529-540.	0.9	32
112	The phylum Vertebrata: a case for zoological recognition. Zoological Letters, 2018, 4, 32.	0.7	32
113	Evolution of Otx paralogue usages in early patterning of the vertebrate head. Developmental Biology, 2009, 325, 282-295.	0.9	31
114	Development of lamprey mucocartilage and its dorsal–ventral patterning by endothelin signaling, with insight into vertebrate jaw evolution. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2011, 316B, 339-346.	0.6	31
115	Overview of the transcriptome profiles identified in hagfish, shark, and bichir: current issues arising from some nonmodel vertebrate taxa. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2011, 316B, 526-546.	0.6	31
116	Evolution of the regionalization and patterning of the vertebrate telencephalon: what can we learn from cyclostomes?. Current Opinion in Genetics and Development, 2013, 23, 475-483.	1.5	30
117	Early development of the facial nerve in the chick embryo with special reference to the development of the chorda tympani. American Journal of Anatomy, 1988, 182, 169-182.	0.9	29
118	Development of the Chondrocranium of the Loggerhead Turtle, Caretta caretta. Zoological Science, 1999, 16, 803-818.	0.3	29
119	A Short Consensus Repeat-Containing Complement Regulatory Protein of Lamprey That Participates in Cleavage of Lamprey Complement 3. Journal of Immunology, 2004, 173, 1118-1128.	0.4	29
120	Primitive versus derived traits in the developmental program of the vertebrate head: views from cyclostome developmental studies. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2008, 310B, 294-314.	0.6	29
121	Developmental Biology of Hagfishes, with a Report on Newly Obtained Embryos of the Japanese Inshore Hagfish, Eptatretus burgeri. Zoological Science, 2008, 25, 999-1011.	0.3	29
122	Is the vertebrate head segmented?evolutionary and developmental considerations. Integrative and Comparative Biology, 2008, 48, 647-657.	0.9	29
123	Non-parsimonious evolution of hagfish Dlx genes. BMC Evolutionary Biology, 2013, 13, 15.	3.2	29
124	On the peculiar morphology and development of the hypoglossal, glossopharyngeal and vagus nerves and hypobranchial muscles in the hagfish. Zoological Letters, 2015, 1, 6.	0.7	29
125	Impaired development of the thymic primordium after neural crest ablation. The Anatomical Record, 1990, 228, 185-190.	2.3	28
126	Genome-Wide Detection of Gene Extinction in Early Mammalian Evolution. Genome Biology and Evolution, 2011, 3, 1449-1462.	1.1	28

#	Article	IF	CITATIONS
127	Cyclostome embryology and early evolutionary history of vertebrates. Integrative and Comparative Biology, 2007, 47, 329-337.	0.9	27
128	Evolutionary and developmental understanding of the spinal accessory nerve. Zoological Letters, 2015, 1, 4.	0.7	27
129	Embryonic evidence uncovers convergent origins of laryngeal echolocation in bats. Current Biology, 2021, 31, 1353-1365.e3.	1.8	27
130	Late Development of Hagfish Vertebral Elements. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2013, 320, 129-139.	0.6	26
131	Evolution of the Vertebrate Cranium: Viewed from Hagfish Developmental Studies. Zoological Science, 2016, 33, 229.	0.3	26
132	Lamprey contractile protein genes mark different populations of skeletal muscles during development. The Journal of Experimental Zoology, 2004, 302B, 121-133.	1.4	25
133	Evolution of Hox genes in molluscs: a comparison among seven morphologically diverse classes. Journal of Molluscan Studies, 2006, 72, 259-266.	0.4	25
134	Expansion of the neck reconstituted the shoulder–diaphragm in amniote evolution. Development Growth and Differentiation, 2016, 58, 143-153.	0.6	25
135	Gene Expression Analysis of Lamprey Embryos. Neuromethods, 2015, , 263-278.	0.2	25
136	Autopodial Development in the Sea Turtles Chelonia mydas and Caretta caretta. Zoological Science, 2007, 24, 257-263.	0.3	24
137	Hagfish (cyclostomata, vertebrata): Searching for the ancestral developmental plan of vertebrates. BioEssays, 2008, 30, 167-172.	1.2	24
138	Outflow tract septation and the aortic arch system in reptiles: lessons for understanding the mammalian heart. EvoDevo, 2017, 8, 9.	1.3	24
139	Recapitulation-like developmental transitions of chromatin accessibility in vertebrates. Zoological Letters, 2019, 5, 33.	0.7	24
140	Compartments in the lamprey embryonic brain as revealed by regulatory gene expression and the distribution of reticulospinal neurons. Brain Research Bulletin, 2002, 57, 271-275.	1.4	23
141	Brain segmentation and trigeminal projections in the lamprey; with reference to vertebrate brain evolution. Brain Research Bulletin, 2008, 75, 218-224.	1.4	23
142	Expansions, diversification, and interindividual copy number variations of AID/APOBEC family cytidine deaminase genes in lampreys. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3211-E3220.	3.3	23
143	Expression of foreign genes in lamprey embryos: An approach to study evolutionary changes in gene regulation. The Journal of Experimental Zoology, 2003, 296B, 87-97.	1.4	22
144	On the maxillary nerve. Journal of Morphology, 2014, 275, 17-38.	0.6	22

#	Article	IF	CITATIONS
145	What are Head Cavities? â€" A History of Studies on Vertebrate Head Segmentation. Zoological Science, 2016, 33, 213.	0.3	22
146	Comparative morphology and development of extra-ocular muscles in the lamprey and gnathostomes reveal the ancestral state and developmental patterns of the vertebrate head. Zoological Letters, 2016, 2, 10.	0.7	22
147	The Evolutionary Origin of the Vertebrate Body Plan: The Problem of Head Segmentation. Annual Review of Genomics and Human Genetics, 2014, 15, 443-459.	2.5	21
148	On the origin of vertebrate somites. Zoological Letters, 2015, 1, 33.	0.7	21
149	Migratory appendicular muscles precursor cells in the common ancestor to all vertebrates. Nature Ecology and Evolution, 2017, 1, 1731-1736.	3.4	21
150	Identification and developmental expression of two Tbx $1/10$ -related genes in the agnathan Lethenteron japonicum. Development Genes and Evolution, 2007, 217, 691-697.	0.4	19
151	A staining procedure for nerve fibers in whole mount preparations of the medaka and chick embryos Acta Histochemica Et Cytochemica, 1986, 19, 775-783.	0.8	18
152	Hepatocyte growth factor is crucial for development of the carapace in turtles. Evolution & Development, 2011, 13, 260-268.	1.1	18
153	The evolutionary origin of the turtle shell and its dependence on the axial arrest of the embryonic rib cage. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2015, 324, 194-207.	0.6	18
154	The neural crest and evolution of the head/trunk interface in vertebrates. Developmental Biology, 2018, 444, S60-S66.	0.9	18
155	Mammalian face as an evolutionary novelty. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	3.3	18
156	Ancestral mesodermal reorganization and evolution of the vertebrate head. Zoological Letters, 2015, 1, 29.	0.7	17
157	On the vagal cardiac nerves, with special reference to the early evolution of the head–trunk interface. Journal of Morphology, 2016, 277, 1146-1158.	0.6	17
158	Nitric Oxide regulates mouth development in amphioxus. Scientific Reports, 2017, 7, 8432.	1.6	16
159	Development of glossopharyngeal nerve branches in the early chick embryo with special reference to morphology of the Jacobson's anastomosis. Anatomy and Embryology, 1990, 181, 253-69.	1.5	15
160	Expression pattern of two collagen type 2 α1 genes in the Japanese inshore hagfish (<i>Eptatretus) Tj ETQq0 0 0 Zoology Part B: Molecular and Developmental Evolution, 2010, 314B, 157-165.</i>	rgBT /Ove 0.6	erlock 10 Tf 5 15
161	Palaeospondylus as a primitive hagfish. Zoological Letters, 2016, 2, 20.	0.7	15
162	Evolution of the vertebrate jaw: homology and developmental constraints. Paleontological Research, 2003, 7, 89-102.	0.5	14

#	Article	IF	Citations
163	Unique features of Myf-5 in turtles: nucleotide deletion, alternative splicing, and unusual expression pattern. Evolution & Development, 2006, 8, 415-423.	1.1	14
164	Development of hypobranchial muscles with special reference to the evolution of the vertebrate neck. Zoological Letters, 2018, 4, 5.	0.7	14
165	The participation of neural crest derived mesenchymal cells in development of the epithelial primordium of the thymus Archives of Histology and Cytology, 1990, 53, 267-273.	0.2	14
166	Cloning and analysis of a new developmentally regulated member of the basic helix-loop-helix family. Mechanisms of Development, 1994, 48, 93-108.	1.7	13
167	Head segmentation in vertebrates. Integrative and Comparative Biology, 2008, 48, 604-610.	0.9	13
168	Origin of the unique morphology of the shoulder girdle in turtles. Journal of Anatomy, 2013, 223, 547-556.	0.9	13
169	The neural crest and origin of the neurocranium in vertebrates. Genesis, 2018, 56, e23213.	0.8	13
170	Capacity of neural crest cells from various axial levels to participate in thymic development. Cell and Tissue Research, 1991, 263, 99-105.	1.5	12
171	The origin of developmental mechanisms underlying vertebral elements: implications from hagfish evo-devo. Zoology, 2014, 117, 77-80.	0.6	11
172	Metamerism in cephalochordates and the problem of the vertebrate head. International Journal of Developmental Biology, 2017, 61, 621-632.	0.3	11
173	Evolution of the muscular system in tetrapod limbs. Zoological Letters, 2018, 4, 27.	0.7	11
174	Evo-devo studies of cyclostomes and the origin and evolution of jawed vertebrates. Current Topics in Developmental Biology, 2021, 141, 207-239.	1.0	11
175	Analysis of Embryonic Gene Expression Patterns in the Hagfish. Neuromethods, 2015, , 249-262.	0.2	11
176	Patterning of the cranial nerves in the chick embryo is dependent on cranial mesoderm and rhombomeric metamerism. Development Growth and Differentiation, 1995, 37, 717-731.	0.6	10
177	Comparative analysis of pleurodiran and cryptodiran turtle embryos depicts the molecular ground pattern of the turtle carapacial ridge. International Journal of Developmental Biology, 2014, 58, 743-750.	0.3	10
178	The developmental hourglass model and recapitulation: An attempt to integrate the two models. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2022, 338, 76-86.	0.6	10
179	Evolutionary divergence of trigeminal nerve somatotopy in amniotes. Journal of Comparative Neurology, 2013, 521, 1378-1394.	0.9	9
180	Stepwise participation of HGF/MET signaling in the development of migratory muscle precursors during vertebrate evolution. Zoological Letters, 2018, 4, 18.	0.7	9

#	Article	IF	CITATIONS
181	The appearance of trigeminal ectopic ganglia within the surface ectoderm in the chick embryo Archives of Histology and Cytology, 1990, 53, 575-583.	0.2	8
182	Differing contributions of the first and second pharyngeal arches to tympanic membrane formation in the mouse and chick. Development (Cambridge), 2017, 144, 3315-3324.	1.2	8
183	Novel developmental bases for the evolution of hypobranchial muscles in vertebrates. BMC Biology, 2020, 18, 120.	1.7	8
184	Developmental fates of shark head cavities reveal mesodermal contributions to tendon progenitor cells in extraocular muscles. Zoological Letters, 2021, 7, 3.	0.7	8
185	Inhibition of epibranchial placode-derived ganglia in the developing rat by bisdiamine. The Anatomical Record, 1992, 233, 617-624.	2.3	7
186	Origin of the Turtle Body Plan: The Folding Theory to Illustrate Turtle-Specific Developmental Repatterning. Vertebrate Paleobiology and Paleoanthropology, 2013, , 37-50.	0.1	6
187	A Muscular Perspective on Vertebrate Evolution. Science, 2013, 341, 139-140.	6.0	6
188	Evolution of retinoic acid receptors in chordates: insights from three lamprey species, Lampetra fluviatilis, Petromyzon marinus, and Lethenteron japonicum. EvoDevo, 2015, 6, 18.	1.3	6
189	Developmental mechanisms of the tympanic membrane in mammals and nonâ€mammalian amniotes. Congenital Anomalies (discontinued), 2016, 56, 12-17.	0.3	6
190	Paleontological Studies Integrated into a New Evolutionary Zoology. Zoological Science, 2017, 34, 1-4.	0.3	6
191	Cyclostome Studies in the Context of Vertebrate Evolution. Zoological Science, 2008, 25, 953-954.	0.3	5
192	Launch of Zoological Letters. Zoological Science, 2016, 33, 1-5.	0.3	5
193	Genetic Mechanism for the Cyclostome Cerebellar Neurons Reveals Early Evolution of the Vertebrate Cerebellum. Frontiers in Cell and Developmental Biology, 2021, 9, 700860.	1.8	5
194	How can recapitulation be reconciled with modern concepts of evolution?. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2022, 338, 28-35.	0.6	5
195	A developmental basis for innovative evolution of the turtle shell. , 2012, , 279-300.		4
196	Development of the thalamo-dorsal ventricular ridge tract in the Chinese soft-shelled turtle, Pelodiscus sinensis. Development Growth and Differentiation, 2015, 57, 40-57.	0.6	4
197	Expression patterns of <i>Sema3A</i> in developing amniote limbs: With reference to the diversification of peripheral nerve innervation. Development Growth and Differentiation, 2017, 59, 270-285.	0.6	4
198	Measuring potential effects of the developmental burden associated with the vertebrate notochord. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2022, 338, 129-136.	0.6	4

#	Article	IF	Citations
199	Morphology of Palaeospondylus shows affinity to tetrapod ancestors. Nature, 2022, 606, 109-112.	13.7	4
200	Developmental Studies on the Vertebrate Head Evolution. Zoological Science, 2005, 22, 1361-1366.	0.3	3
201	The Turtle Evolution: A Conundrum in Vertebrate Evo-Devo. , 2014, , 303-314.		3
202	Getting the measure of a monster. Nature, 2016, 532, 447-448.	13.7	3
203	Forebrain Architecture and Development in Cyclostomes, with Reference to the Early Morphology and Evolution of the Vertebrate Head. Brain, Behavior and Evolution, 2021, , 1-13.	0.9	3
204	Thyroid and endostyle development in cyclostomes provides new insights into the evolutionary history of vertebrates. BMC Biology, 2022, 20, 76.	1.7	3
205	Evolutionary embryology resurrected in Japan with a new molecular basis: Nori Satoh and the history of ascidian studies originating in Kyoto during the 20th century. International Journal of Developmental Biology, 2006, 50, 451-4.	0.3	2
206	Insights into neural crest migration and differentiation from experimental embryology. Development (Cambridge), 2009, 136, 1585-1589.	1.2	2
207	On the homology of the shoulder girdle in turtles. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2015, 324, 244-254.	0.6	2
208	Development and Evolution of the Neck Muscles. , 2021, , 849-862.		1
209	Evolution and Development of the Vertebrate Cranium. , 2019, , 1-15.		1
210	Development of the Chondrocranial Base of the Musk Shrew, Suncus murinus (Insectivora) Experimental Animals, 1995, 44, 79-86.	0.7	0
211	Evolutionary embryology resurrected in Japan with a new molecular basisâ€"Nori Satoh and the history of ascidian studies born in Kyoto in the 20th century. Russian Journal of Developmental Biology, 2006, 37, 397-400.	0.1	O
212	1P263 Phenotypic Variation and Integration in Butterfly & Moth Wing Pattern(Bioinformatics-structural, functional, and comparative genomics,Oral Presentations). Seibutsu Butsuri, 2007, 47, S89.	0.0	0
213	Characterizing the Time Dependency of Human Mitochondrial DNA Mutation Rate Estimates. Molecular Biology and Evolution, 2008, 26, 713-713.	3.5	O
214	1P-130 Sophisticated Modular Design of Moth Wing Pattern Cryptically Mimicking a 'Dead Leaf'(The) Tj ETQq0 () T8370 (Overlock 10 Tf
215	Evolution of developmental plan for peripheral nervous system in amniote trunk region. Neuroscience Research, 2011, 71, e67.	1.0	0
216	Special Issue Featuring Zoological Society Award Reviews. Zoological Science, 2014, 31, 623.	0.3	0

#	Article	IF	CITATIONS
217	History and Current Theories of the Vertebrate Head Segmentation. , 2021, , 877-890.		0
218	Evolution and Development of the Vertebrate Cranium., 2021,, 891-905.		0
219	Developmental Evolution of Hypaxial Muscles: Insights From Cyclostomes and Chondrichthyans. Frontiers in Cell and Developmental Biology, 2021, 9, 760366.	1.8	0
220	Evolution of Skeletal Tissues. , 2021, , 863-875.		0
221	The Heterotopic Shift in Developmental Patterns and Evolution of the Jaw in Vertebrates. , 2003, , 119-125.		0
222	Neural crest and evolution of the vertebrate body plan. FASEB Journal, 2007, 21, .	0.2	0
223	What we can learn from hagfish embryology. FASEB Journal, 2013, 27, 315.2.	0.2	0
224	History and Current Theories of the Vertebrate Head Segmentation. , 2019, , 1-14.		0
225	Development and Evolution of the Neck Muscles. , 2020, , 1-14.		O