Eric F May

List of Publications by Citations

Source: https://exaly.com/author-pdf/225898/eric-f-may-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

218 46 3,751 34 g-index h-index citations papers 4,624 5.83 238 5.4 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
218	Polarizability of helium and gas metrology. <i>Physical Review Letters</i> , 2007 , 98, 254504	7.4	114
217	Screening Zeolites for Gas Separation Applications Involving Methane, Nitrogen, and Carbon Dioxide. <i>Journal of Chemical & Dioxide</i> . <i>Journal of Chemical & Dioxide</i> . 2012, 57, 106-113	2.8	88
216	Underinhibited Hydrate Formation and Transport Investigated Using a Single-Pass Gas-Dominant Flowloop. <i>Energy & Dominant</i> Flowloop. <i>Energy & Dominant</i> Flowloop. <i>Energy & Dominant</i> Flowloop.	4.1	86
215	Quantitative kinetic inhibitor comparisons and memory effect measurements from hydrate formation probability distributions. <i>Chemical Engineering Science</i> , 2014 , 107, 1-12	4.4	78
214	Hydrate Formation in Gas-Dominant Systems Using a Single-Pass Flowloop. <i>Energy & Energy & En</i>	4.1	77
213	Reference Viscosities of H2, CH4, Ar, and Xe at Low Densities. <i>International Journal of Thermophysics</i> , 2007 , 28, 1085-1110	2.1	73
212	Hydrate plug formation risk with varying watercut and inhibitor concentrations. <i>Chemical Engineering Science</i> , 2015 , 126, 711-718	4.4	65
211	CO2 sequestration for enhanced gas recovery: New measurements of supercritical CO2ICH4 dispersion in porous media and a review of recent research. <i>International Journal of Greenhouse Gas Control</i> , 2012 , 9, 457-468	4.2	60
210	Quasi-spherical cavity resonators for metrology based on the relative dielectric permittivity of gases. <i>Review of Scientific Instruments</i> , 2004 , 75, 3307-3317	1.7	60
209	Capture of low grade methane from nitrogen gas using dual-reflux pressure swing adsorption. <i>Chemical Engineering Journal</i> , 2015 , 281, 739-748	14.7	59
208	A Review of Conventional and Emerging Process Technologies for the Recovery of Helium from Natural Gas. <i>Adsorption Science and Technology</i> , 2014 , 32, 49-72	3.6	56
207	Adsorption Equilibria and Kinetics of Methane + Nitrogen Mixtures on the Activated Carbon Norit RB3. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 14270-14281	3.9	56
206	Gas hydrate plug formation in partially-dispersed waterBil systems. <i>Chemical Engineering Science</i> , 2016 , 140, 337-347	4.4	55
205	Synthesis of high quality zeolites from coal fly ash: Mobility of hazardous elements and environmental applications. <i>Journal of Cleaner Production</i> , 2018 , 202, 390-400	10.3	48
204	Hydrate formation and particle distributions in gasWater systems. <i>Chemical Engineering Science</i> , 2013 , 104, 177-188	4.4	48
203	Enhanced gas recovery with CO 2 sequestration: The effect of medium heterogeneity on the dispersion of supercritical CO 2 LTH 4. <i>International Journal of Greenhouse Gas Control</i> , 2015 , 39, 39-50	4.2	48
202	Hydrate formation and deposition in a gas-dominant flowloop: Initial studies of the effect of velocity and subcooling. <i>Journal of Natural Gas Science and Engineering</i> , 2016 , 35, 1490-1498	4.6	46

(2008-2015)

20	High-pressure visual experimental studies of oil-in-water dispersion droplet size. <i>Chemical Engineering Science</i> , 2015 , 127, 392-400	4.4	45	
20	Optimized Droplet Sizing of Water-in-Crude Oil Emulsions Using Nuclear Magnetic Resonance. Energy & E	4.1	44	
19	9 Probability distributions of gas hydrate formation. <i>AICHE Journal</i> , 2013 , 59, 2640-2646	3.6	41	
19	Heat Capacities and Low Temperature Thermal Transitions of 1-Hexyl and 1-Octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide. <i>Journal of Chemical &</i> Engineering Data, 2011 , 56, 2153-2159	2.8	41	
19	Characterising thermally controlled CH4IIO2 hydrate exchange in unconsolidated sediments. Energy and Environmental Science, 2018 , 11, 1828-1840	35.4	40	
19	Transport properties of argon at zero density from viscosity-ratio measurements. <i>Metrologia</i> , 2006 , 43, 247-258	2.1	39	
19	High-fidelity reservoir simulations of enhanced gas recovery with supercritical CO2. <i>Energy</i> , 2016 , 111, 548-559	7.9	39	
19	Thermodynamic properties of hydrofluoroolefin (R1234yf and R1234ze(E)) refrigerant mixtures: Density, vapour-liquid equilibrium, and heat capacity data and modelling. <i>International Journal of Refrigeration</i> , 2019 , 98, 249-260	3.8	37	
19	Temperature-regulated guest admission and release in microporous materials. <i>Nature Communications</i> , 2017 , 8, 15777	17.4	36	
19	Physical apparatus parameters and model for vibrating tube densimeters at pressures to 140 MPa and temperatures to 473 K. <i>Review of Scientific Instruments</i> , 2014 , 85, 095111	1.7	36	
19	Saturated phase densities of (CO2 + H2O) at temperatures from (293 to 450) K and pressures up to 64 MPa. <i>Journal of Chemical Thermodynamics</i> , 2016 , 93, 347-359	2.9	36	
19	Gas hydrate formation probability distributions: Induction times, rates of nucleation and growth. <i>Fuel</i> , 2019 , 252, 448-457	7.1	35	
18	9 Accurate lineshape spectroscopy and the Boltzmann constant. <i>Nature Communications</i> , 2015 , 6, 8345	17.4	34	
18	Gas Hydrate Formation Probability Distributions: The Effect of Shear and Comparisons with Nucleation Theory. <i>Langmuir</i> , 2018 , 34, 3186-3196	4	34	
18	Dispersion of supercritical CO2 and CH4 in consolidated porous media for enhanced gas recovery simulations. <i>International Journal of Greenhouse Gas Control</i> , 2013 , 19, 234-242	4.2	34	
18	High pressure rheological measurements of gas hydrate-in-oil slurries. <i>Journal of Non-Newtonian Fluid Mechanics</i> , 2017 , 248, 40-49	2.7	34	
18	Densities and Dew Points of Vapor Mixtures of Methane + Propane and Methane + Propane + Hexane Using a Dual-Sinker Densimeter. <i>Journal of Chemical & Design Services</i> (1988) Densimeter (1988) Densities and Dew Points of Vapor Mixtures of Methane + Propane and Methane + Propane + Hexane Using a Dual-Sinker Densimeter. <i>Journal of Chemical & Design Services</i> (1988) Densities and Dew Points of Vapor Mixtures of Methane + Propane and Methane + Propane + Hexane Using a Dual-Sinker Densimeter.	66 8	34	
18.	Emulsion Inhibiting Components in Crude Oils. <i>Energy & Discounty Fuels</i> , 2008 , 22, 1093-1099	4.1	33	

183	Hydrate Shell Growth Measured Using NMR. <i>Langmuir</i> , 2015 , 31, 8786-94	4	32
182	Volumetric Adsorption Measurements of N2, CO2, CH4, and a CO2 + CH4 Mixture on a Natural Chabazite from (5 to 3000) kPa. <i>Journal of Chemical & Engineering Data</i> , 2012 , 57, 93-101	2.8	32
181	Methane P ropane Mixed Gas Hydrate Film Growth on the Surface of Water and Luvicap EG Solutions. <i>Energy & Damp; Fuels</i> , 2013 , 27, 2548-2554	4.1	30
180	Equilibrium Adsorption Measurements of Pure Nitrogen, Carbon Dioxide, and Methane on a Carbon Molecular Sieve at Cryogenic Temperatures and High Pressures <i>Journal of Chemical & Engineering Data</i> , 2009 , 54, 2701-2707	2.8	30
179	Quantitative atomic spectroscopy for primary thermometry. <i>Physical Review A</i> , 2011 , 83,	2.6	30
178	Non-isothermal numerical simulations of dual reflux pressure swing adsorption cycles for separating N 2 + CH 4. <i>Chemical Engineering Journal</i> , 2016 , 292, 366-381	14.7	29
177	NMR studies of emulsion microstructure approaching the phase inversion point. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2014 , 462, 244-251	5.1	29
176	An optimal trapdoor zeolite for exclusive admission of CO at industrial carbon capture operating temperatures. <i>Chemical Communications</i> , 2018 , 54, 3134-3137	5.8	28
175	The impact of residual water on CH4-CO2 dispersion in consolidated rock cores. <i>International Journal of Greenhouse Gas Control</i> , 2016 , 50, 100-111	4.2	28
174	Gas hydrate formation probability and growth rate as a function of kinetic hydrate inhibitor (KHI) concentration. <i>Chemical Engineering Journal</i> , 2020 , 388, 124177	14.7	27
173	Modelling hydrate deposition and sloughing in gas-dominant pipelines. <i>Journal of Chemical Thermodynamics</i> , 2018 , 117, 81-90	2.9	27
172	Raman Spectroscopic Studies of Clathrate Hydrate Formation in the Presence of Hydrophobized Particles. <i>Journal of Physical Chemistry A</i> , 2016 , 120, 417-24	2.8	27
171	Reference Values and Reference Correlations for the Thermal Conductivity and Viscosity of Fluids. Journal of Physical and Chemical Reference Data, 2018, 47,	4.3	27
170	Simulation and experimental measurements of internal magnetic field gradients and NMR transverse relaxation times (T2) in sandstone rocks. <i>Journal of Petroleum Science and Engineering</i> , 2019 , 175, 985-997	4.4	26
169	Extending the GERG-2008 equation of state: Improved departure function and interaction parameters for (methane + butane). <i>Journal of Chemical Thermodynamics</i> , 2016 , 97, 206-213	2.9	26
168	Reference Quality VaporIliquid Equilibrium Data for the Binary Systems Methane + Ethane, + Propane, + Butane, and + 2-Methylpropane, at Temperatures from (203 to 273) K and Pressures to 9 MPa. <i>Journal of Chemical & Data</i> , Engineering Data, 2015 , 60, 3606-3620	2.8	25
167	Gas Hydrate Thermodynamic Inhibition with MDEA for Reduced MEG Circulation. <i>Journal of Chemical & </i>	2.8	24
166	Adsorption equilibria and kinetics of CH4 and N2 on commercial zeolites and carbons. <i>Adsorption</i> , 2017 , 23, 131-147	2.6	24

(2010-2018)

165	Quantifying the Effect of Salinity on Oilfield Water-in-Oil Emulsion Stability. <i>Energy & Company Stability</i> . <i>Energy & Compan</i>	4.1	24	
164	Capillary trapping quantification in sandstones using NMR relaxometry. <i>Water Resources Research</i> , 2017 , 53, 7917-7932	5.4	24	
163	Effect of Brine Salinity on the Stability of Hydrate-in-Oil Dispersions and Water-in-Oil Emulsions. <i>Energy & Dispersions</i> , 2015, 29, 7948-7955	4.1	23	
162	Simulating Hydrate Growth and Transport Behavior in Gas-Dominant Flow. <i>Energy & Company States</i> , 2018, 32, 1012-1023	4.1	23	
161	Relative Permittivity of Dimethylsulfoxide and N,N-Dimethylformamide at Temperatures from (278 to 328) K and Pressures from (0.1 to 5) MPa. <i>Journal of Chemical & Data</i> , 2010, 55, 2055	5 -2 865	22	
160	Development of an automated phase behaviour measurement system for lean hydrocarbon fluid mixtures, using re-entrant rf/microwave resonant cavities. <i>Fluid Phase Equilibria</i> , 2001 , 185, 339-347	2.5	22	
159	EOS-LNG: A Fundamental Equation of State for the Calculation of Thermodynamic Properties of Liquefied Natural Gases. <i>Journal of Physical and Chemical Reference Data</i> , 2019 , 48, 033102	4.3	21	
158	Reduction of Clathrate Hydrate Film Growth Rate by Naturally Occurring Surface Active Components. <i>Energy & Documents</i> , 2017, 31, 5798-5805	4.1	20	
157	Nitrogen rejection from methane using dual-reflux pressure swing adsorption with a kinetically-selective adsorbent. <i>Chemical Engineering Journal</i> , 2019 , 372, 1038-1046	14.7	20	
156	Corrosion inhibitor interaction at hydrateBil interfaces from differential scanning calorimetry measurements. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2014 , 448, 81-87	5.1	20	
155	Vaporliquid Equilibria Measurements of the Methane + Pentane and Methane + Hexane Systems at Temperatures from (173 to 330) K and Pressures to 14 MPa. <i>Journal of Chemical & Engineering Data</i> , 2011 , 56, 4301-4309	2.8	20	
154	Electric and magnetic susceptibilities of gaseous oxygen: Present data and modern theory compared. <i>Physical Review A</i> , 2008 , 78,	2.6	20	
153	The delay of gas hydrate formation by kinetic inhibitors. <i>Chemical Engineering Journal</i> , 2021 , 411, 12847	'8 4.7	20	
152	Demonstration and optimisation of the four Dual-Reflux Pressure Swing Adsorption configurations. <i>Separation and Purification Technology</i> , 2017 , 177, 161-175	8.3	19	
151	Methane Hydrate Bed Formation in a Visual Autoclave: Cold Restart and Reynolds Number Dependence. <i>Journal of Chemical & Engineering Data</i> , 2015 , 60, 409-417	2.8	19	
150	Dielectric Constants and Molar Polarizabilities for Vapor Mixtures of Methane + Propane and Methane + Propane + Hexane Obtained with a Radio Frequency Reentrant Cavity. <i>Journal of Chemical & Data</i> , 2002, 47, 102-105	2.8	19	
149	Capacity and kinetic measurements of methane and nitrogen adsorption on H+-mordenite at 243B03 K and pressures to 900 kPa using a dynamic column breakthrough apparatus. <i>Adsorption</i> , 2013 , 19, 1165-1180	2.6	18	
148	Characterization of the volume and shape of quasi-spherical resonators using coordinate measurement machines. <i>Metrologia</i> , 2010 , 47, 588-604	2.1	18	

147	Dew Point, Liquid Volume, and Dielectric Constant Measurements in a Vapor Mixture of Methane + Propane Using a Microwave Apparatus. <i>International Journal of Thermophysics</i> , 2003 , 24, 1509-1525	2.1	18
146	Microscale Detection of Hydrate Blockage Onset in High-Pressure Gas Water Systems. <i>Energy & Energy Fuels</i> , 2017 , 31, 4875-4885	4.1	17
145	By-line NMR emulsion droplet sizing. <i>Chemical Engineering Science</i> , 2017 , 160, 362-369	4.4	17
144	Atomic spectroscopy for primary thermometry. <i>Metrologia</i> , 2015 , 52, S324-S342	2.1	17
143	Rapid assessments of hydrate blockage risk in oil-continuous flowlines. <i>Journal of Natural Gas Science and Engineering</i> , 2016 , 30, 284-294	4.6	17
142	Binary and ternary adsorption equilibria for CO2/CH4/N2 mixtures on Zeolite 13X beads from 273 to 333 K and pressures to 900 kPa. <i>Adsorption</i> , 2018 , 24, 381-392	2.6	17
141	Advanced non-isothermal dynamic simulations of dual reflux pressure swing adsorption cycles. <i>Chemical Engineering Research and Design</i> , 2017 , 126, 76-88	5.5	17
140	Hydrate nucleation and growth on water droplets acoustically-levitated in high-pressure natural gas. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 21685-21688	3.6	17
139	Surface tension and critical point measurements of methane + propane mixtures. <i>Journal of Chemical Thermodynamics</i> , 2017 , 111, 173-184	2.9	16
138	Measurement and modelling of the thermodynamic properties of carbon dioxide mixtures with HFO-1234yf, HFC-125, HFC-134a, and HFC-32: vapour-liquid equilibrium, density, and heat capacity. <i>International Journal of Refrigeration</i> , 2020 , 118, 514-528	3.8	16
137	Quantitative produced water analysis using mobile1H NMR. <i>Measurement Science and Technology</i> , 2016 , 27, 105501	2	16
136	Characterisation of a microwave re-entrant cavity resonator for phase-equilibrium measurements and new dew-point data for a (0.25 argon + 0.75 carbon dioxide) mixture. <i>Journal of Chemical Thermodynamics</i> , 2016 , 101, 395-404	2.9	16
135	Improved Methods for Gas Mixture Viscometry Using a Vibrating Wire Clamped at Both Ends. Journal of Chemical & Engineering Data, 2014, 59, 1619-1628	2.8	16
134	Isobaric Heat Capacity Measurements of Liquid Methane, Ethane, and Propane by Differential Scanning Calorimetry at High Pressures and Low Temperatures. <i>Journal of Chemical & Data</i> , 2012, 57, 3573-3580	2.8	16
133	Advanced predictions of solidification in cryogenic natural gas and LNG processing. <i>Journal of Chemical Thermodynamics</i> , 2019 , 137, 22-33	2.9	15
132	Viscosity of $\{xCO2 + (1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	2.9	15
131	Effect of Kinetic Hydrate Inhibitor Polyvinylcaprolactam on Cyclopentane Hydrate Cohesion Forces and Growth. <i>Energy & Double Supplementary</i> 28, 3632-3637	4.1	15
130	Viscosity of $\{xCH4 + (1 \ \ \ \ \ \ \ \}$ with $x = 0.949$ for Temperatures between (200 and 423) K and Pressures between (10 and 31) MPa. <i>Journal of Chemical & Data</i> , Engineering Data, 2015, 60, 118-123	2.8	15

129	A dynamic column breakthrough apparatus for adsorption capacity measurements with quantitative uncertainties. <i>Adsorption</i> , 2012 , 18, 251-263	2.6	15	
128	Entropy Scaling of Viscosity I II: Application to Refrigerants and Their Mixtures. <i>Journal of Chemical & Engineering Data</i> , 2021 , 66, 1385-1398	2.8	15	
127	Determination of melting temperatures in hydrocarbon mixtures by differential scanning calorimetry. <i>Journal of Chemical Thermodynamics</i> , 2017 , 108, 59-70	2.9	14	
126	NMR Studies of the Effect of CO2 on Oilfield Emulsion Stability. <i>Energy & Discourse (Cost)</i> 2016, 30, 5555-556	524.1	14	
125	Analysis of available data from liquefied natural gas rollover incidents to determine critical stability ratios. <i>AICHE Journal</i> , 2014 , 60, 362-374	3.6	14	
124	Vapor l iquid Equilibria Measurements of Methane + 2-Methylpropane (Isobutane) at Temperatures from (150 to 250) K and Pressures to 9 MPa. <i>Journal of Chemical & Data</i> , 2010 , 55, 2725-2731	2.8	14	
123	Inclusion of connate water in enhanced gas recovery reservoir simulations. <i>Energy</i> , 2017 , 141, 757-769	7.9	13	
122	Phase equilibrium measurements of (methane + benzene) and (methane + methylbenzene) at temperatures from (188 to 348) K and pressures to 13 MPa. <i>Journal of Chemical Thermodynamics</i> , 2015 , 85, 141-147	2.9	13	
121	Rapid Simulation of Solid Deposition in Cryogenic Heat Exchangers To Improve Risk Management in Liquefied Natural Gas Production. <i>Energy & Damp; Fuels</i> , 2018 , 32, 255-267	4.1	13	
120	Viscosity of a [xCH4 + (1 $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	7.1	13	
119	Isobaric Heat Capacity Measurements of Liquid Methane + Propane, Methane + Butane, and a Mixed Refrigerant by Differential Scanning Calorimetry at High Pressures and Low Temperatures. Journal of Chemical & Differential Data, 2014, 59, 968-974	2.8	13	
118	Densities, Dielectric Permittivities, and Dew Points for (Argon + Carbon Dioxide) Mixtures Determined with a Microwave Re-entrant[Cavity[Resonator. <i>Journal of Chemical & Data</i> , 2017, 62, 2521-2532	2.8	12	
117	Viscosity and Dew Point Measurements of $\{xCH4 + (1 \ \ \ \ \ \ \)C4H10\}$ for $x = 0.9484$ with a Vibrating-Wire Viscometer. <i>Journal of Chemical & Data</i> , 2015 , 60, 3688-3695	2.8	12	
116	Shear-induced emulsion droplet diffusion studies using NMR. <i>Journal of Colloid and Interface Science</i> , 2016 , 464, 229-37	9.3	12	
115	NMR Measurements of Tortuosity in Partially Saturated Porous Media. <i>Transport in Porous Media</i> , 2018 , 125, 271-288	3.1	12	
114	Quantitative Tortuosity Measurements of Carbonate Rocks Using Pulsed Field Gradient NMR. <i>Transport in Porous Media</i> , 2019 , 130, 847-865	3.1	12	
113	Viscosity Ratio Measurements with Capillary Viscometers. <i>Journal of Chemical & Data</i> , 2014 , 59, 116-124	2.8	12	
112	Nitrogen rejection from natural gas by dual reflux-pressure swing adsorption using activated carbon and ionic liquidic zeolite. <i>Separation and Purification Technology</i> , 2020 , 235, 116215	8.3	12	

111	Characterization of Crude Oils That Naturally Resist Hydrate Plug Formation. <i>Energy & amp; Fuels</i> , 2017 , 31, 5806-5816	4.1	11
110	Thermal conductivity data for refrigerant mixtures containing R1234yf and R1234ze(E). <i>Journal of Chemical Thermodynamics</i> , 2019 , 133, 135-142	2.9	11
109	Solubility of p-xylene in methane and ethane and implications for freeze-out at LNG conditions. <i>Experimental Thermal and Fluid Science</i> , 2019 , 105, 47-57	3	11
108	Micromechanical Cohesive Force Measurements between Precipitated Asphaltene Solids and Cyclopentane Hydrates. <i>Energy & Description</i> 29, 6277-6285	4.1	11
107	Simultaneous quantification of aliphatic and aromatic hydrocarbons in produced water analysis using mobile 1H NMR. <i>Measurement Science and Technology</i> , 2018 , 29, 085501	2	11
106	Density Measurements of Methane + Propane Mixtures at Temperatures between (256 and 422) K and Pressures from (24 to 35) MPa. <i>Journal of Chemical & Data, Engineering Data, 2016, 61, 2782-2790</i>	2.8	11
105	Dielectric permittivity, polarizability and dipole moment of refrigerants R1234ze(E) and R1234yf determined using a microwave re-entrant cavity resonator. <i>Journal of Chemical Thermodynamics</i> , 2019 , 128, 148-158	2.9	11
104	Viscosity measurements of (CH4 + C3H8 + CO2) mixtures at temperatures between (203 and 420) K and pressures between (3 and 31) MPa. <i>Fuel</i> , 2018 , 231, 187-196	7.1	11
103	Quantitative dependence of CH4-CO2 dispersion on immobile water fraction. <i>AICHE Journal</i> , 2017 , 63, 5159-5168	3.6	10
102	In Situ CH4ttO2 Dispersion Measurements in Rock Cores. <i>Transport in Porous Media</i> , 2019 , 129, 75-92	3.1	10
101	Solid-fluid equilibrium measurements of benzene in methane and implications for freeze-out at LNG conditions. <i>Fluid Phase Equilibria</i> , 2020 , 519, 112609	2.5	10
100	Visual Measurements of Solid[liquid Equilibria and Induction Times for Cyclohexane + Octadecane Mixtures at Pressures to 5 MPa. <i>Journal of Chemical & Engineering Data</i> , 2017 , 62, 2896-2910	2.8	10
99	Absolute absorption line-shape measurements at the shot-noise limit. <i>Physical Review A</i> , 2012 , 86,	2.6	10
98	Reference measurements of hydrogens dielectric permittivity. <i>Molecular Physics</i> , 2009 , 107, 1577-1585	1.7	10
97	Shear and Electrical Property Measurements of Water-in-Oil Emulsions and Implications for Multiphase Flow Meters. <i>Energy & Double Supply Supp</i>	4.1	10
96	Density, dielectric constant and PVT measurements of a gas condensate fluid. <i>Journal of Petroleum Science and Engineering</i> , 2004 , 41, 297-308	4.4	10
95	The Dielectric Permittivity of Saturated Liquid Carbon Dioxide and Propane Measured Using Cross Capacitors. <i>International Journal of Thermophysics</i> , 2005 , 26, 563-576	2.1	10
94	Liquid and Vapor Viscosities of Binary Refrigerant Mixtures Containing R1234yf or R1234ze(E). Journal of Chemical & Data, 2019, 64, 1122-1130	2.8	9

(2021-2015)

93	Gastas Dispersion Coefficient Measurements Using Low-Field MRI. <i>Transport in Porous Media</i> , 2015 , 106, 21-32	3.1	9
92	Power-dependent line-shape corrections for quantitative spectroscopy. <i>Physical Review A</i> , 2012 , 86,	2.6	9
91	Upgrading sub-quality natural gas by dual reflux-pressure swing adsorption using activated carbon and ionic liquidic zeolite. <i>Chemical Engineering Journal</i> , 2020 , 392, 123753	14.7	9
90	Thermal conductivity measurements of refrigerant mixtures containing hydrofluorocarbons (HFC-32, HFC-125, HFC-134a), hydrofluoroolefins (HFO-1234yf), and carbon dioxide (CO2). <i>Journal of Chemical Thermodynamics</i> , 2020 , 151, 106248	2.9	9
89	Measurements of boil-off gas and stratification in cryogenic liquid nitrogen with implications for the storage and transport of liquefied natural gas. <i>Energy</i> , 2021 , 222, 119853	7.9	9
88	Viscosity Measurements of Binary and Multicomponent Refrigerant Mixtures Containing HFC-32, HFC-134a, HFO-1234yf, and CO2. <i>Journal of Chemical & Data</i> , 2020, 65, 4252-4	4 2 82	8
87	High-Pressure Thermal Conductivity Measurements of a (Methane + Propane) Mixture with a Transient Hot-Wire Apparatus. <i>Journal of Chemical & Data</i> , 2020, 65, 906-915	2.8	8
86	Simulating the capture of CO2 from natural gas: New data and improved models for methane + carbon dioxide + methanol. <i>International Journal of Greenhouse Gas Control</i> , 2014 , 31, 121-127	4.2	8
85	Temperature dependence of adsorption hysteresis in flexible metal organic frameworks. <i>Communications Chemistry</i> , 2020 , 3,	6.3	8
84	Investigating hydrate formation rate and the viscosity of hydrate slurries in water-dominant flow: Flowloop experiments and modelling. <i>Fuel</i> , 2021 , 292, 120193	7.1	8
83	Advanced boil-off gas studies for liquefied natural gas. <i>Applied Thermal Engineering</i> , 2021 , 189, 116735	5.8	8
82	Measurements of helium adsorption on natural clinoptilolite at temperatures from (123.15 to 423.15) K and pressures up to 35 MPa. <i>Separation and Purification Technology</i> , 2019 , 223, 1-9	8.3	7
81	Reliable prediction of aqueous dew points in CO2 pipelines and new approaches for control during shut-in. <i>International Journal of Greenhouse Gas Control</i> , 2018 , 70, 97-104	4.2	7
80	Rheological Method To Describe Metastable Hydrate-in-Oil Slurries. <i>Energy & amp; Fuels</i> , 2020 , 34, 7955.	-74964	7
79	Cyclodextrins as eco-friendly nucleation promoters for methane hydrate. <i>Chemical Engineering Journal</i> , 2021 , 417, 127932	14.7	7
78	Minimum ignition energies and laminar burning velocities of ammonia, HFO-1234yf, HFC-32 and their mixtures with carbon dioxide, HFC-125 and HFC-134a. <i>Journal of Hazardous Materials</i> , 2021 , 407, 124781	12.8	7
77	Measurements of solidification kinetics for benzene in methane at high pressures and cryogenic temperatures. <i>Chemical Engineering Journal</i> , 2021 , 407, 127086	14.7	7
76	High-resolution performance tests of nucleation and growth suppression by two kinetic hydrate inhibitors. <i>Chemical Engineering Science</i> , 2021 , 244, 116776	4.4	7

75	Low-field NMR relaxation-exchange measurements for the study of gas admission in microporous solids. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 13689-13697	3.6	6
74	Hydrate Plug Dissociation via Active Heating: Uniform Heating and a Simple Predictive Model. <i>Energy & Energy &</i>	4.1	6
73	Crystal growth phenomena of CH4 + C3H8 + CO2 ternary gas hydrate systems. <i>Journal of Natural Gas Science and Engineering</i> , 2016 , 35, 1426-1434	4.6	6
72	High-pressure cryogenic distillation data for improved LNG production. <i>Separation and Purification Technology</i> , 2019 , 229, 115804	8.3	6
71	Rejecting N2 from natural gas by dual reflux pressure swing adsorption with activated carbon. <i>Journal of Natural Gas Science and Engineering</i> , 2020 , 81, 103457	4.6	6
70	NMR-Compatible Sample Cell for Gas Hydrate Studies in Porous Media. <i>Energy & Description</i> 2020, 34, 12388-12398	4.1	6
69	Isobaric heat capacities of a methane (1) + propane (2) mixture by differential scanning calorimetry at near-critical and supercritical conditions. <i>Fuel</i> , 2021 , 289, 119840	7.1	6
68	Natural gas density measurements and the impact of accuracy on process design. <i>Fuel</i> , 2021 , 304, 1213	9 5 .1	6
67	High pressure multi-component vapor-liquid equilibrium data and model predictions for the LNG industry. <i>Journal of Chemical Thermodynamics</i> , 2017 , 113, 81-90	2.9	5
66	A robust dynamic column breakthrough technique for high-pressure measurements of adsorption equilibria and kinetics. <i>Adsorption</i> , 2017 , 23, 671-684	2.6	5
65	Viscosity of (CH4 + C3H8 + CO2 + N2) mixtures at temperatures between (243 and 423) K and pressures between (1 and 28) MPa: Experiment and theory. <i>Fuel</i> , 2019 , 251, 447-457	7.1	5
64	Predicting Hydrate Blockage Formation in Gas-Dominant Systems 2018 ,		5
63	Rapid hydrocarbon dew points by infrared spectroscopy: Results and validation for binary mixtures of methane + {propane, isobutane and butane}. <i>Journal of Industrial and Engineering Chemistry</i> , 2018 , 58, 304-310	6.3	5
62	Oil-Based Binding Resins: Peculiar Water-in-Oil Emulsion Breakers. <i>Energy & Comp.; Fuels</i> , 2019 , 33, 8448-8	34,55	5
61	Effective Critical Constants for Helium for Use in Equations of State for Natural Gas Mixtures. Journal of Chemical & Engineering Data, 2017, 62, 2799-2811	2.8	5
60	Low-Field Functional Group Resolved Nuclear Spin Relaxation in Mesoporous Silica. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 54476-54485	9.5	5
59	Solid-Phase Extraction Nuclear Magnetic Resonance (SPE-NMR): Prototype Design, Development, and Automation. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 20836-20844	3.9	5
58	Experimental study of impurity freeze-out in ternary methane + ethane + benzene mixtures with applications to LNG production. <i>Journal of Natural Gas Science and Engineering</i> , 2021 , 90, 103918	4.6	5

57	Isobaric heat capacity measurements of natural gas model mixtures (methane + n-heptane) and (propane + n-heptane) by differential scanning calorimetry at temperatures from 313 K to 422 K and pressures up to 31 MPa. <i>Fuel</i> , 2021 , 296, 120668	7.1	5	
56	Capillary Trapping of CO2 in Sandstone Using Low Field NMR Relaxometry. <i>Water Resources Research</i> , 2019 , 55, 10466-10478	5.4	5	
55	Densities and dielectric permittivities for (carbon monoxide + carbon dioxide) mixtures determined with a microwave re-entrant cavity resonator. <i>Journal of Chemical Thermodynamics</i> , 2019 , 129, 114-120	2.9	5	
54	Gas Diffusion and Sorption in Carbon Conversion. <i>Energy Procedia</i> , 2019 , 158, 1792-1797	2.3	4	
53	Flexible Adsorbents at High Pressure: Observations and Correlation of ZIF-7 Stepped Sorption Isotherms for Nitrogen, Argon, and Other Gases. <i>Langmuir</i> , 2020 , 36, 14967-14977	4	4	
52	Influence of Mineral Composition of Chars Derived by Hydrothermal Carbonization on Sorption Behavior of CO, CH, and O. <i>ACS Omega</i> , 2020 , 5, 10704-10714	3.9	4	
51	Wide-Ranging Reference Correlations for Dilute Gas Transport Properties Based on Ab Initio Calculations and Viscosity Ratio Measurements. <i>Journal of Physical and Chemical Reference Data</i> , 2020 , 49, 013101	4.3	4	
50	Accurate High-Pressure Measurements of Carbon Monoxide's Electrical Properties. <i>ChemPhysChem</i> , 2018 , 19, 784-792	3.2	4	
49	Modelling of Liquid Hydrogen Boil-Off. <i>Energies</i> , 2022 , 15, 1149	3.1	4	
48	High-Fidelity Evaluation of Hybrid Gas Hydrate Inhibition Strategies. <i>Energy & amp; Fuels</i> , 2020 , 34, 1598	34.1159	894	
47	Nitrogen Rejection by Dual Reflux Pressure Swing Adsorption Using Engelhard Titanosilicate Type 4. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 22573-22581	3.9	4	
46	Avoiding costly LNG plant freeze-out-induced shutdowns: Measurement and modelling for neopentane solubility at LNG conditions. <i>Energy</i> , 2021 , 217, 119331	7.9	4	
45	The rational design of Li-doped nitrogen adsorbents for natural gas purification. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 971-981	3.6	4	
44	Phase equilibrium studies of high-pressure natural gas mixtures with toluene for LNG applications. <i>Fluid Phase Equilibria</i> , 2020 , 518, 112620	2.5	3	
43	Enthalpy of Vaporization Measurements of Liquid Methane, Ethane, and Methane + Ethane by Differential Scanning Calorimetry at Low Temperatures and High Pressures. <i>Journal of Chemical & Engineering Data</i> , 2017 , 62, 2253-2260	2.8	3	
42	Gas hydrate nucleation in acoustically levitated water droplets. Chemical Engineering Journal, 2021, 133	3 4:9;4 7	3	
41	Entropy Scaling of Thermal Conductivity: Application to Refrigerants and Their Mixtures. <i>Industrial & Engineering Chemistry Research</i> , 2021 , 60, 13052-13070	3.9	3	
40	The impact of mono-ethylene glycol and kinetic inhibitors on methane hydrate formation. <i>Chemical Engineering Journal</i> , 2022 , 427, 131531	14.7	3	

39	Pilot scale assessment of methane capture from low concentration sources to town gas specification by pressure vacuum swing adsorption (PVSA). <i>Chemical Engineering Journal</i> , 2022 , 427, 130810	14.7	3
38	Hydrogen Liquefaction: A Review of the Fundamental Physics, Engineering Practice and Future Opportunities. <i>Energy and Environmental Science</i> ,	35.4	3
37	Emulsion Breakage Mechanism Using Pressurized Carbon Dioxide. Energy & Emulsion Breakage Mechanism Using Pressurized Carbon Dioxide. Energy & Emulsion Breakage Mechanism Using Pressurized Carbon Dioxide.	1945	2
36	Managing Hydrate Formation in Subsea Production 2020 ,		2
35	Extended calibration of a vibrating tube densimeter and new reference density data for a methane-propane mixture at temperatures from (203 to 423) K and pressures to 35IMPa. <i>Journal of Molecular Liquids</i> , 2020 , 310, 113219	6	2
34	A New Rheology Model for Hydrate-in-Oil Slurries 2018,		2
33	Risk-Based Flow Assurance Design for Natural Gas Hydrate Production Systems 2018 ,		2
32	Dielectric Polarization Studies in Partially Saturated Shale Cores. <i>Journal of Geophysical Research: Solid Earth</i> , 2019 , 124, 10721-10734	3.6	2
31	Application of Raman Spectroscopy for Sorption Analysis of Functionalized Porous Materials <i>Advanced Science</i> , 2022 , e2105477	13.6	2
30	Evaluating cubic equations of state for predictions of solid-fluid equilibrium in liquefied natural gas production. <i>Fuel</i> , 2022 , 314, 123033	7.1	2
29	Advanced boil-off gas studies of liquefied natural gas used for the space and energy industries. <i>Acta Astronautica</i> , 2021 , 190, 444-444	2.9	2
28	Miscible Fluid Displacement in Rock Cores Evaluated with NMR T2 Relaxation Time Measurements. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 18280-18289	3.9	2
27	Thermal conductivity measurements and correlations of pure R1243zf and binary mixtures of R32 + R1243zf and R32 + R1234yf. <i>International Journal of Refrigeration</i> , 2021 , 131, 990-990	3.8	2
26	Effect of hydrate anti-agglomerants on water-in-crude oil emulsion stability. <i>Journal of Petroleum Exploration and Production</i> , 2020 , 10, 139-148	2.2	2
25	Thermodynamic Properties of Liquid Toluene from Speed-of-Sound Measurements at Temperatures from 283.15 K to 473.15 K and at Pressures up to 390 MPa. <i>International Journal of Thermophysics</i> , 2021 , 42, 1	2.1	2
24	Nucleation Rates of Carbon Dioxide Hydrate. <i>Chemical Engineering Journal</i> , 2022 , 136359	14.7	2
23	Application of a Transient Deposition Model for Hydrate Management in a Subsea Gas-Condensate Tieback 2019 ,		1
22	Characterization of Fluid-Phase Behavior Using an Advanced Microwave Re-Entrant Cavity. <i>Journal of Chemical & Data</i> , 2020 , 65, 3393-3402	2.8	1

21	Subcooling and Induction Time Measurements of Probabilistic Hydrate Formation 2018,		1
20	Nitrogen Sorption in a Transition Metal Complex Solution for N2 Rejection from Methane. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 13284-13293	3.9	1
19	Frontier Oil and Gas 2014 , 75-93		1
18	Low-Field NMR Relaxation Analysis of High-Pressure Ethane Adsorption in Mesoporous Silicas <i>ChemPhysChem</i> , 2022 , e202100794	3.2	1
17	Insights into CO2-CH4 hydrate exchange in porous media using magnetic resonance. <i>Fuel</i> , 2022 , 312, 122830	7.1	1
16	Assessing the risk of hydrate plug formation: a new probability and management tool. <i>APPEA Journal</i> , 2015 , 55, 477	0.6	1
15	Dielectric properties of binary hydrofluoroolefin refrigerant mixtures: Comparisons of new experimental data with molecular dynamics simulations. <i>Journal of Chemical Thermodynamics</i> , 2020 , 142, 105985	2.9	1
14	High-Pressure Melting Temperature Measurements in Mixtures Relevant to Liquefied Natural Gas Production and Comparisons with Model Predictions. <i>Journal of Chemical & Comparisons With Model Predictions</i> .	2.8	1
13	A microwave sensor for detecting impurity freeze out in liquefied natural gas production. <i>Fuel Processing Technology</i> , 2021 , 219, 106878	7.2	1
12	High Pressure Thermal Conductivity Measurements of Ternary (Methane + Propane + Heptane) Mixtures with a Transient Hot-Wire Apparatus. <i>International Journal of Thermophysics</i> , 2021 , 42, 1	2.1	1
11	Prediction of solid formation conditions in mixed refrigerants with iso-pentane and methane at high pressures and cryogenic temperatures. <i>Energy</i> , 2022 , 250, 123789	7.9	1
10	Performance Degradation of the Monoethylene Glycol Regeneration Process in the Presence of Electrolytes: Pilot-Scale Experiments and Dynamic Simulations. <i>Industrial & Dynamic Simulations</i> .	3.9	O
9	Separation of He/N2/CH4 ternary mixtures by a triple-reflux pressure swing adsorption process. AICHE Journal,e17569	3.6	O
8	Helium recovery and purification by dual reflux pressure swing adsorption. <i>Separation and Purification Technology</i> , 2022 , 288, 120603	8.3	O
7	Equation of State for Solid Benzene Valid for Temperatures up to 470 K and Pressures up to 1800 MPa. <i>Journal of Physical and Chemical Reference Data</i> , 2021 , 50, 043104	4.3	О
6	Isobaric heat capacity measurements on ternary mixtures of natural gas components methane, propane and n-heptane by differential scanning calorimetry at temperatures from 197 K to 422 K and pressures up to 32 MPa. <i>Fuel</i> , 2022 , 308, 121904	7.1	O
5	Behavior of Methane Hydrate-in-Water Slurries from Shut-in to Flow Restart. <i>Energy & amp; Fuels</i> , 2021 , 35, 13086-13097	4.1	О
4	High pressure viscosity measurements of ternary (methane + propane + heptane) mixtures. <i>Fuel Processing Technology</i> , 2021 , 223, 106984	7.2	O

	Minimum miscibility pressure of CO2 and oil evaluated using MRI and NMR measurements. Journal
3	of Petroleum Science and Engineering, 2022 , 110515

4.4 0

Determination of the Relative Permittivity, E, of Octane at Temperatures between (303 and 393) K and Pressures below 25 MPa with a Concentric Cylinder Capacitor at a Frequency of 1 kHz. *Journal of Chemical & Data*, 2014, 59, 1609-1613

2.8

Interfacial Tension Measurements of Methane + Propane Binary and Methane + Propane + n-Heptane Ternary Mixtures at Low Temperatures. *Journal of Chemical Thermodynamics*, **2022**, 106786 2.9