Zhan Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2258862/publications.pdf

Version: 2024-02-01

23879 36203 13,824 311 60 101 citations h-index g-index papers 315 315 315 17681 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Hepcidinâ€Based Nanocomposites for Enhanced Cancer Immunotherapy by Modulating Iron Exportâ€Mediated N6â€Methyladenosine RNA Transcript. Advanced Functional Materials, 2022, 32, 2107195.	7.8	16
2	Magnetic properties and electrocatalytic properties of Fe5C2 particles with different morphologies. Journal of Materials Science: Materials in Electronics, 2022, 33, 884-893.	1.1	3
3	Defect-engineered Mn3O4/CNTs composites enhancing reaction kinetics for zinc-ions storage performance. Journal of Energy Chemistry, 2022, 68, 538-547.	7.1	15
4	Stable isomeric layered indium coordination polymers for high proton conduction. CrystEngComm, 2022, 24, 294-299.	1.3	2
5	Construction of crystalline cadmium complex based on 1,4,5,8â€naphthalene diimide derivative and photocatalytic degradation about organic dyes. Applied Organometallic Chemistry, 2022, 36, .	1.7	6
6	Glutathioneâ€Bioimprinted Nanoparticles Targeting of N6â€methyladenosine FTO Demethylase as a Strategy against Leukemic Stem Cells. Small, 2022, 18, e2106558.	5.2	45
7	Construction of Large-Scale Conjugated Functionalized Cyclotriphosphazene Lanthanide Framework for Selective Sensing of Volatile Organic Compounds and Assembly of Color-Tunable Dye-Encapsulated Composites. Inorganic Chemistry, 2022, 61, 3111-3120.	1.9	7
8	Confined Pyrolysis Synthesis of Well-dispersed Cobalt Copper Bimetallic Three-dimensional N-Doped Carbon Framework as Efficient Water Splitting Electrocatalyst. Chemical Research in Chinese Universities, 2022, 38, 750-757.	1.3	13
9	Highâ€Performance Aqueous Zincâ€Ion Battery Based on an Al _{0.35} Mn _{2.52} O ₄ Cathode: A Design Strategy from Defect Engineering and Atomic Composition Tuning. Small, 2022, 18, e2105970.	5.2	13
10	High thermoelectric properties with low thermal conductivity due to the porous structure induced by the dendritic branching in n-type PbS. Nano Research, 2022, 15, 4739-4746.	5.8	8
11	Poly(Anthraquinonyl Sulfide)/CNT Composites as Highâ€Rateâ€Performance Cathodes for Nonaqueous Rechargeable Calcium″on Batteries. Advanced Science, 2022, 9, e2200397.	5.6	13
12	Construction and Properties of Ag-I Polymeric Clusters Attach with Nitrogen Heterocyclic Transition Metal Moiety. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 1695-1711.	1.9	2
13	A mitochondria-tracing fluorescent probe for real-time detection of mitochondrial dynamics and hypochlorous acid in live cells. Dyes and Pigments, 2022, 201, 110227.	2.0	7
14	Installation of synergistic binding sites onto porous organic polymers for efficient removal of perfluorooctanoic acid. Nature Communications, 2022, 13, 2132.	5.8	49
15	Mass Production of Pt Single-Atom-Decorated Bismuth Sulfide for n-Type Environmentally Friendly Thermoelectrics. Nano Letters, 2022, 22, 4750-4757.	4.5	20
16	Highly crystalline sulfur and oxygen co-doped g-C ₃ N ₄ nanosheets as an advanced photocatalyst for efficient hydrogen generation. Catalysis Science and Technology, 2022, 12, 5136-5142.	2.1	8
17	Three-pole wheel paddle luminescent metal organic frameworks (LMOFs) based on the oxygen substituted triazine tricarboxylic acid ligand: recognition and detection of small drug molecules and aromatic amine molecules. Dalton Transactions, 2022, 51, 9336-9347.	1.6	6
18	Ultrafine Sb nanoparticles <i>in situ</i> confined in covalent organic frameworks for high-performance sodium-ion battery anodes. Journal of Materials Chemistry A, 2022, 10, 15089-15100.	5.2	19

#	Article	IF	Citations
19	Visible-Light-Responsive UiO-66(Zr) with Defects Efficiently Promoting Photocatalytic CO ₂ Reduction. ACS Applied Materials & Interfaces, 2022, 14, 28977-28984.	4.0	33
20	Quantitative Evaluation of Carrier Dynamics in Full-Spectrum Responsive Metallic Znln ₂ S ₄ with Indium Vacancies for Boosting Photocatalytic CO ₂ Reduction. Nano Letters, 2022, 22, 4970-4978.	4. 5	54
21	Origin of the Photocatalytic Activity of Crystalline Phase Structures. ACS Applied Energy Materials, 2022, 5, 8923-8929.	2.5	2
22	An electrochemical modification strategy to fabricate NiFeCuPt polymetallic carbon matrices on nickel foam as stable electrocatalysts for water splitting. Chemical Science, 2022, 13, 8876-8884.	3.7	8
23	Double perovskite Cs ₂ NaInCl ₆ nanocrystals with intense dual-emission <i>via</i> self-trapped exciton-to-Tb ³⁺ dopant energy transfer. Journal of Materials Chemistry C, 2022, 10, 10609-10615.	2.7	32
24	Systematic Study on the Luminescent Properties, Thermal Stability, and Magnetic Behavior of GdOF: RE ³⁺ (RE = Eu, Yb, and Er) Red Phosphors with Various Morphologies. Inorganic Chemistry, 2022, 61, 10642-10651.	1.9	3
25	The photoluminescence, thermal properties and tunable color of bright green-emitting Ba3Sc(BO3)3:Ce3+/Tb3+ phosphors via efficient energy transfer. Journal of Alloys and Compounds, 2021, 859, 157766.	2.8	24
26	Synthesis of a microporous poly-benzimidazole as high performance anode materials for lithium-ion batteries. Chemical Engineering Journal, 2021, 405, 126621.	6.6	8
27	Critical Aspects of Metal–Organic Frameworkâ€Based Materials for Solarâ€Driven CO 2 Reduction into Valuable Fuels. Global Challenges, 2021, 5, 2000082.	1.8	9
28	A cage-based covalent organic framework for drug delivery. New Journal of Chemistry, 2021, 45, 3343-3348.	1.4	31
29	Multicolor tunable emission and energy transfer in AlN:Tb3+,Eu3+ phosphors. Journal of Materials Science: Materials in Electronics, 2021, 32, 210-218.	1.1	5
30	Porous organic polymer enriched in Re functional units and Lewis base sites for efficient CO ₂ photoreduction. Catalysis Science and Technology, 2021, 11, 7300-7306.	2.1	6
31	A smart sensing triazine hexacarboxylic metal–organic skeleton material: synthesis, structure and multifunctional fluorescence detector. Journal of Materials Chemistry C, 2021, 9, 3193-3203.	2.7	20
32	Achieving Multifunctional Detection of Th ⁴⁺ and UO ₂ ²⁺ in the Postâ€Synthetically Modified Metal–Organic Framework and Application of Functional MOF Membrane. Advanced Materials Technologies, 2021, 6, 2001184.	3.0	10
33	Highly Active Heterogeneous Catalyst for Ethylene Dimerization Prepared by Selectively Doping Ni on the Surface of a Zeolitic Imidazolate Framework. Journal of the American Chemical Society, 2021, 143, 7144-7153.	6.6	42
34	Luminescence and Energy Transfer of Color-Tunable Y ₂ Mg ₂ Al ₂ Si ₂ O ₁₂ :Eu ²⁺ ,Ce ^{3 Phosphors. Inorganic Chemistry, 2021, 60, 5908-5916.}	3+ 1./ 3up>	33
35	Defect engineering of photocatalysts for solar-driven conversion of CO2 into valuable fuels. Materials Today, 2021, 50, 358-384.	8.3	66
36	Tumor-Associated-Macrophage-Membrane-Coated Nanoparticles for Improved Photodynamic Immunotherapy. Nano Letters, 2021, 21, 5522-5531.	4.5	106

#	Article	lF	CITATIONS
37	Hard magnetic cobalt nanomaterials as an electrocatalyst for oxygen evolution reaction. Journal of Materials Science: Materials in Electronics, 2021, 32, 17490-17499.	1.1	1
38	Li ⁺ lon Induced Full Visible Emission in Single Eu ²⁺ â€Doped White Emitting Phosphor: Eu ²⁺ Site Preference Analysis, Luminescence Properties, and WLED Applications. Advanced Optical Materials, 2021, 9, 2100337.	3.6	45
39	Phase and morphology evolution of NaGdF4:Yb,Er nanocrystals with power density-dependent upconversion fluorescence via one-step microwave-assisted solvothermal method. Journal of Luminescence, 2021, 239, 118283.	1.5	1
40	lonic liquid/H $<$ sub $>$ 2 $<$ /sub $>$ 0 two-phase synthesis and luminescence properties of BaGdF $<$ sub $>$ 5 $<$ /sub $>$:RE $<$ sup $>$ 3+ $<$ /sup $>$ (RE = Ce/Dy/Eu/Yb/Er) octahedra. New Journal of Chemistry, 2021, 45, 742-750.	1.4	6
41	Multifunctional luminescence sensing and white light adjustment of lanthanide metal–organic frameworks constructed from the flexible cyclotriphosphazene-derived hexacarboxylic acid ligand. Dalton Transactions, 2021, 50, 14618-14628.	1.6	17
42	A three-dimensional supramolecular network structure through hydrogen bonding and π–π interaction: synthesis, structure, and the fluorescence detection of balsalazide disodium. CrystEngComm, 2021, 23, 4840-4847.	1.3	5
43	Copper nanocluster composites for analytical (bio)-sensing and imaging: a review. Mikrochimica Acta, 2021, 188, 384.	2.5	23
44	Multivariate Synergistic Flexible Metalâ€Organic Frameworks with Superproton Conductivity for Direct Methanol Fuel Cells. Angewandte Chemie, 2021, 133, 26781-26785.	1.6	4
45	Multivariate Synergistic Flexible Metalâ€Organic Frameworks with Superproton Conductivity for Direct Methanol Fuel Cells. Angewandte Chemie - International Edition, 2021, 60, 26577-26581.	7.2	34
46	Gold Nanorods Exhibit Intrinsic Therapeutic Activity via Controlling $\langle i \rangle N \langle i \rangle 6$ -Methyladenosine-Based Epitranscriptomics in Acute Myeloid Leukemia. ACS Nano, 2021, 15, 17689-17704.	7.3	36
47	Manganese Cyclotriphosphazene Multicarboxylate Frameworks and Composite Encapsulated 1,3,6,8-Tetrakis(<i>p</i> for Aromatic Compounds with NH ₂ /NO ₂ Group. Crystal Growth and Design, 2021, 21, 6824-6839.	1.4	8
48	The photoluminescence properties and latent photocatalytic hydrogen evolution application of AlN:Eu3+. Journal of Alloys and Compounds, 2020, 817, 152759.	2.8	17
49	Stimuliâ€Responsive Luminescent Properties of Tetraphenyletheneâ€Based Strontium and Cobalt Metal–Organic Frameworks. Angewandte Chemie, 2020, 132, 19884-19889.	1.6	8
50	Photoluminescence and Color-Tunable Properties of Na ₄ Ca ₄ Mg ₂₁ (PO ₄) ₁₈ :Eu ²⁺ ,Tb Phosphors for Applications in White LEDs. Inorganic Chemistry, 2020, 59, 14193-14206.	sup1x•3+ <td>sup2#Mn<sup< td=""></sup<></td>	sup 2 #Mn <sup< td=""></sup<>
51	Bismuth-MOF based on tetraphenylethylene derivative as a luminescent sensor with turn-off/on for application of Fe3+ detection in serum and bioimaging, as well as emissive spectra analysis by TRES. Sensors and Actuators B: Chemical, 2020, 325, 128767.	4.0	55
52	Mitochondria-Immobilized Unimolecular Fluorescent Probe for Multiplexing Imaging of Living Cancer Cells. Analytical Chemistry, 2020, 92, 11103-11110.	3.2	23
53	Bortezomib-Encapsulated CuS/Carbon Dot Nanocomposites for Enhanced Photothermal Therapy via Stabilization of Polyubiquitinated Substrates in the Proteasomal Degradation Pathway. ACS Nano, 2020, 14, 10688-10703.	7.3	88
54	Natural Melanin/Polyurethane Composites as Highly Efficient Near-Infrared-Photoresponsive Shape Memory Implants. ACS Biomaterials Science and Engineering, 2020, 6, 5305-5314.	2.6	17

#	Article	IF	CITATIONS
55	Crystal structure, luminescence properties and application performance of color tuning Y ₂ Mg ₂ Al ₂ Si ₂ O ₁₂ :Ce ³⁺ ,Mn ^{phosphors for warm white light-emitting diodes. Materials Advances, 2020, 1, 2261-2270.}	2- ₽ ∢∳sup>	19
56	Stimuliâ€Responsive Luminescent Properties of Tetraphenyletheneâ€Based Strontium and Cobalt Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2020, 59, 19716-19721.	7.2	70
57	A single-phase full-visible-spectrum phosphor for white light-emitting diodes with ultra-high color rendering. Dalton Transactions, 2020, 49, 17796-17805.	1.6	11
58	Selfâ€Assembly of Perovskite CsPbBr 3 Quantum Dots Driven by a Photoâ€Induced Alkynyl Homocoupling Reaction. Angewandte Chemie, 2020, 132, 17360-17366.	1.6	11
59	Selfâ€Assembly of Perovskite CsPbBr ₃ Quantum Dots Driven by a Photoâ€Induced Alkynyl Homocoupling Reaction. Angewandte Chemie - International Edition, 2020, 59, 17207-17213.	7.2	19
60	Synthesis of ZnS/CoS/CoS2@N-doped carbon nanoparticles derived from metal-organic frameworks via spray pyrolysis as anode for lithium-ion battery. Journal of Alloys and Compounds, 2020, 831, 154607.	2.8	32
61	Ca(Mg _{0.8} Al _{0.2})(Si _{1.8} Al _{0.2})O ₆ :Ce ^{3+Phosphors: Structure Control, Density-Functional Theory Calculation, and Luminescence Property for pc-wLED Application. Inorganic Chemistry, 2020, 59, 4790-4799.}	ıp>,Tb <sup 1.9</sup 	0>3+
62	Engineering Colloidal Lithography and Nanoskiving to Fabricate Rows of Opposing Crescent Nanogaps. Advanced Optical Materials, 2020, 8, 2000006.	3.6	9
63	Study on the Local Structure and Luminescence Properties of a Y ₂ Mg ₂ Al ₂ Si ₂ O ₁₂ :Eu ³⁺ Red Phosphor for White-Light-Emitting Diodes. Inorganic Chemistry, 2020, 59, 9927-9937.	1.9	55
64	Methanol-to-Olefin Conversion over Small-Pore DDR Zeolites: Tuning the Propylene Selectivity via the Olefin-Based Catalytic Cycle. ACS Catalysis, 2020, 10, 3009-3017.	5.5	12
65	Selective Acetylene Adsorption within an Imino-Functionalized Nanocage-Based Metal–Organic Framework. ACS Applied Materials & Interfaces, 2020, 12, 5999-6006.	4.0	33
66	A stable nanoscaled Zr-MOF for the detection of toxic mycotoxin through a pH-modulated ratiometric luminescent switch. Chemical Communications, 2020, 56, 5389-5392.	2.2	49
67	One-Pot Synthesis of High-Quality AgGaS ₂ /ZnS-based Photoluminescent Nanocrystals with Widely Tunable Band Gap. Inorganic Chemistry, 2020, 59, 5975-5982.	1.9	21
68	Two d ¹⁰ luminescent metal–organic frameworks as dual functional luminescent sensors for (Fe ³⁺ ,Cu ²⁺) and 2,4,6-trinitrophenol (TNP) with high selectivity and sensitivity. RSC Advances, 2020, 10, 4817-4824.	1.7	13
69	Synthesis of a 2D nitrogen-rich π-conjugated microporous polymer for high performance lithium-ion batteries. Chemical Communications, 2019, 55, 9491-9494.	2.2	40
70	Synthesis, Structure, and Magnetic Properties of Bâ€Doped Fe 3 N@C Magnetic Nanomaterial as Catalyst for the Hydrogen Evolution Reaction. Physica Status Solidi (B): Basic Research, 2019, 256, 1900111.	0.7	5
71	Delicately designed Sn-based electrode material via spray pyrolysis for high performance lithium-ion battery. Electrochimica Acta, 2019, 318, 542-550.	2.6	16
72	Hydrothermal synthesis, characterization and properties of a d ¹⁰ metal coordination polymer with a layered structure based on carboxyphosphinate ligand, $4,4$ ^{$\hat{a}\in^2$} -bipyridine and four-coordinated zinc ion. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 1126-1133.	0.8	3

#	Article	IF	CITATIONS
73	A promising single-phase, color-tunable phosphor (Ba0.9Sr0.1)9Lu2Si6O24: Eu2+, Mn2+ for near-ultraviolet white-light-emitting diodes. Journal of Luminescence, 2019, 214, 116585.	1.5	11
74	Synthesis, Structure and Properties Comparison of Fe ₃ N Doped with Ni, Mn and Co. ChemistrySelect, 2019, 4, 5945-5949.	0.7	2
75	3D Hierarchical Znln ₂ S ₄ Nanosheets with Rich Zn Vacancies Boosting Photocatalytic CO ₂ Reduction. Advanced Functional Materials, 2019, 29, 1905153.	7.8	308
76	CeO ₂ â€Encapsulated Hollow Ag–Au Nanocage Hybrid Nanostructures as Highâ€Performance Catalysts for Cascade Reactions. Small, 2019, 15, e1903182.	5.2	33
77	Integrated "Hot Spots― Tunable Subâ€10 nm Crescent Nanogap Arrays. Advanced Optical Materials, 2019, 7, 1901337.	3.6	18
78	Luminescent covalent organic framework as a recyclable turn-off fluorescent sensor for cations and anions in aqueous solution. Journal of Materials Chemistry C, 2019, 7, 11919-11925.	2.7	35
79	Conjugated Microporous Polymers as Heterogeneous Photocatalysts for Efficient Degradation of a Mustard-Gas Simulant. ACS Applied Materials & Simulant. Simulant. ACS Applied Materials & Simulant. Simul	4.0	49
80	The synthesis, morphology and magnetic properties of (Felâ^'xMnx)3N nanoparticles. Journal of Materials Science: Materials in Electronics, 2019, 30, 277-283.	1.1	3
81	3D zig-zag nanogaps based on nanoskiving for plasmonic nanofocusing. Nanoscale, 2019, 11, 3583-3590.	2.8	11
82	Polyoxometalate@MIL-101/MoS2: a composite material based on the MIL-101 platform with enhanced performances. New Journal of Chemistry, 2019, 43, 3432-3438.	1.4	3
83	Versatile core/shell-like alginate@polyethylenimine composites for efficient removal of multiple heavy metal ions (Pb2+, Cu2+, CrO42-): Batch and fixed-bed studies. Materials Research Bulletin, 2019, 118, 110526.	2.7	31
84	Facile synthesis and multicolor luminescence properties of Gd4O3F6:Ln3+ (Ln = Eu, Tb, Dy, Sm, Ho, Tm,) Tj ETQq0	0 0.0 rgBT	/Gverlock 10
85	Color-tunable Eu ²⁺ ,Eu ³⁺ co-doped Ca ₂₀ Al ₂₆ Mg ₃ Si ₃ O ₆₈ phosphor for w-LEDs. Journal of Materials Chemistry C, 2019, 7, 6978-6985.	2.7	32
86	Properties and Application of Single Eu ²⁺ -Activated Color Tuning Phosphors. ACS Sustainable Chemistry and Engineering, 2019, 7, 10724-10733.	3.2	51
87	Synthesis, Crystal Structures, and Magnetic Properties of Three Cobalt(II) Coordination Polymers Constructed from 3,5-Pyridinedicarboxylic Acid or 3,4-Pyridinedicarboxylic Acid Ligands. Crystals, 2019, 9, 166.	1.0	7
88	Soft magnetic Fe5C2–Fe3C@C as an electrocatalyst for the hydrogen evolution reaction. Dalton Transactions, 2019, 48, 4636-4642.	1.6	21
89	Microwave Assisted Hydrothermal Way Towards Highly Crystalized N-Doped Carbon Quantum Dots and Their Oxygen Reduction Performance. Chemical Research in Chinese Universities, 2019, 35, 171-178.	1.3	13
90	Highly active and stable copper catalysts derived from copper silicate double-shell nanofibers with strong metalâ€"support interactions for the RWGS reaction. Chemical Communications, 2019, 55, 4178-4181.	2.2	35

#	Article	IF	CITATIONS
91	Use of Hyperaccumulator to Enrich Metal lons for Supercapacitor. Advanced Electronic Materials, 2019, 5, 1900094.	2.6	9
92	Sr ₂ Gd ₈ (SiO ₄) ₆ O ₂ :Ce ³⁺ /Mn <sup A Singleâ€Component Whiteâ€Lightâ€Emitting Phosphor for UV Wâ€LEDs. ChemistrySelect, 2019, 4, 3871-387</sup)>2+77.	>: ₂
93	Srâ€induced colorâ€tunable and thermal stability enhancing in the phosphor (Ba 1â€x Sr x) 9 Lu 2 Si 6 O 24 :Eu 2+ for solidâ€state lighting. Journal of the American Ceramic Society, 2019, 102, 5284-5294.	1.9	5
94	Half-Encapsulated Au Nanorods@CeO ₂ Core@Shell Nanostructures for Near-Infrared Plasmon-Enhanced Catalysis. ACS Applied Nano Materials, 2019, 2, 1516-1524.	2.4	34
95	Synthesis, Morphology and Magnetic Properties of Fe ₃ C/CNTs Composites by a gâ€C ₃ N ₄ Route. ChemistrySelect, 2019, 4, 13596-13600.	0.7	2
96	A tri-functional metal–organic framework heterogeneous catalyst for efficient conversion of CO ₂ under mild and co-catalyst free conditions. Chemical Communications, 2019, 55, 14347-14350.	2,2	43
97	A non-luminescent Eu-MOF-based "turn-on―sensor towards an anthrax biomarker through single-crystal to single-crystal phase transition. Chemical Communications, 2019, 55, 14918-14921.	2.2	64
98	Covalent organic framework as an efficient, metal-free, heterogeneous photocatalyst for organic transformations under visible light. Applied Catalysis B: Environmental, 2019, 245, 334-342.	10.8	192
99	A SHG-active manganese coordination polymer with noncentrosymmetric structure based on achiral carboxyphosphinate ligand. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 127-133.	0.8	1
100	Crystal structure of ethyl 2-amino-4-(4-ethoxyphenyl)-5-oxo-4 <i>H</i> ,5 <i>H</i> -pyrano[3,2- <i>c</i>] chromene-3-carboxylate, C ₂₃ H ₂₁ NO ₆ . Zeitschrift Fur Kristallographie - New Crystal Structures, 2019, 234, 193-194.	0.1	O
101	Saccharomyces-derived carbon dots for biosensing pH and vitamin B 12. Talanta, 2019, 195, 117-126.	2.9	52
102	Construction of donor-acceptor type conjugated microporous polymers: A fascinating strategy for the development of efficient heterogeneous photocatalysts in organic synthesis. Applied Catalysis B: Environmental, 2019, 244, 36-44.	10.8	100
103	Microwave-assisted synthesis of highly water-soluble LuVO4:Eu nanoparticles as anti-counterfeit fluorescent ink. Journal of Luminescence, 2019, 206, 560-564.	1.5	19
104	Rational Design of Fe–N/C Hybrid for Enhanced Nitrogen Reduction Electrocatalysis under Ambient Conditions in Aqueous Solution. ACS Catalysis, 2019, 9, 336-344.	5.5	278
105	Functional Sensing Materials Based on Lanthanide N-Heterocyclic Polycarboxylate Crystal Frameworks for Detecting Thiamines. Crystal Growth and Design, 2018, 18, 2259-2269.	1.4	11
106	New singleâ€component multicolor emission Na _{1â^'x} Al _{1+2x} Si _{1â^'2x} O4:xBi ³⁺ /Eu ³⁺ phosphors via energy transfer. Journal of the American Ceramic Society, 2018, 101, 2353-2367.	1.9	11
107	Oriented attachment growth of hundred-nanometer-size LaTaON ₂ single crystals in molten salts for enhanced photoelectrochemical water splitting. Journal of Materials Chemistry A, 2018, 6, 7706-7713.	5.2	26
108	Multimorphology Mesoporous Silica Nanoparticles for Dye Adsorption and Multicolor Luminescence Applications. ACS Sustainable Chemistry and Engineering, 2018, 6, 3533-3545.	3.2	74

#	Article	IF	CITATIONS
109	Integration of Open Metal Sites and Lewis Basic Sites for Construction of a Cu MOF with a Rare Chiral <i>O</i> _h â€type cage for high performance in methane purification. Chemistry - A European Journal, 2018, 24, 13181-13187.	1.7	26
110	Mercaptopropionic Acid-Capped Wurtzite Cu ₉ Sn ₂ Se ₉ Nanocrystals as High-Performance Anode Materials for Lithium-Ion Batteries. ACS Applied Materials & Amp; Interfaces, 2018, 10, 1810-1818.	4.0	29
111	A pillared-layered copper(<scp>i</scp>) halide-based metal–organic framework exhibiting dual emission, and piezochromic and thermochromic properties with a large temperature-dependent emission red-shift. RSC Advances, 2018, 8, 1973-1978.	1.7	14
112	Facile surfactant- and template-free synthesis and luminescence properties of needle-like calcite CaCO ₃ :Eu ³⁺ phosphors. CrystEngComm, 2018, 20, 496-504.	1.3	14
113	Preparation of phenyl group functionalized g-C3N4 nanosheets with extended electron delocalization for enhanced visible-light photocatalytic activity. New Journal of Chemistry, 2018, 42, 6756-6762.	1.4	19
114	Covalent organic frameworks: efficient, metal-free, heterogeneous organocatalysts for chemical fixation of CO ₂ under mild conditions. Journal of Materials Chemistry A, 2018, 6, 374-382.	5.2	238
115	Three 3D metal coordination polymers based on triazol-functionalized rigid ligand: Synthesis, topological structure and properties. Journal of Solid State Chemistry, 2018, 258, 56-63.	1.4	8
116	Interface Manipulation to Improve Plasmonâ€Coupled Photoelectrochemical Water Splitting on αâ€Fe ₂ O ₃ Photoanodes. ChemSusChem, 2018, 11, 237-244.	3.6	38
117	Alginate and polyethyleneimine dually mediated synthesis of nanosilver-containing composites for efficient p-nitrophenol reduction. Carbohydrate Polymers, 2018, 181, 744-751.	5.1	43
118	Novel highly efficient single-component multi-peak emitting aluminosilicate phosphors co-activated with $Ce \cdot sup \cdot 3 + \langle sup$	1.3	49
119	Photocatalytic and Photoluminescence Properties of Core–Shell SiO ₂ @TiO ₂ :Eu ³⁺ ,Sm ³⁺ and Its Etching Products. ACS Sustainable Chemistry and Engineering, 2018, 6, 223-236.	3.2	48
120	Cationic porous organic polymers as an excellent platform for highly efficient removal of pollutants from water. Journal of Materials Chemistry A, 2018, 6, 20653-20658.	5.2	86
121	Crystal structure of ethyl 2-amino-4-(3,4-dimethylphenyl)-5-oxo-4 <i>H</i> ,5 <i>H</i> -pyrano[3,2- <i>c</i>)chromene-3-carboxylate, C ₂₃ H ₂₁ NO ₅ . Zeitschrift Fur Kristallographie - New Crystal Structures, 2018, 233, 815-816.	0.1	0
122	Bifunctional Metal-Free Porous Organic Framework Heterogeneous Catalyst for Efficient CO ₂ Conversion under Mild and Cocatalyst-Free Conditions. ACS Sustainable Chemistry and Engineering, 2018, 6, 15050-15055.	3.2	78
123	Di-ionic multifunctional porous organic frameworks for efficient CO ₂ fixation under mild and co-catalyst free conditions. Green Chemistry, 2018, 20, 5285-5291.	4.6	38
124	One-step preparation of Fe O /N-GN/CNTs heterojunctions as a peroxymonosulfate activator for relatively highly-efficient methylene blue degradation. Chinese Journal of Catalysis, 2018, 39, 1842-1853.	6.9	22
125	Significant promotion of porous architecture and magnetic Fe ₃ O ₄ NPs inside honeycomb-like carbonaceous composites for enhanced microwave absorption. RSC Advances, 2018, 8, 19011-19023.	1.7	52
126	Photoluminescent properties of AlN: Mn2+ phosphors. Journal of Alloys and Compounds, 2018, 763, 466-470.	2.8	14

#	Article	IF	CITATIONS
127	Surface chemistry imposes selective reduction of CO ₂ to CO over Ta ₃ N ₅ /LaTiO ₂ N photocatalyst. Journal of Materials Chemistry A, 2018, 6, 14838-14846.	5.2	34
128	Microporous Cu metal-organic framework constructed from V-shaped tetracarboxylic ligand for selective separation of C2H2/CH4 and C2H2/N2 at room temperature. Journal of Solid State Chemistry, 2018, 265, 285-290.	1.4	10
129	Structure and magnetic properties of (Fe1â^'xNdx)3N nanoparticles. Journal of Materials Science: Materials in Electronics, 2018, 29, 13852-13857.	1.1	O
130	Rational design of CNTs with encapsulated Co nanospheres as superior acid- and base-resistant microwave absorbers. Dalton Transactions, 2018, 47, 11554-11562.	1.6	17
131	Seaweed-derived multifunctional nitrogen/cobalt-codoped carbonaceous beads for relatively high-efficient peroxymonosulfate activation for organic pollutants degradation. Chemical Engineering Journal, 2018, 353, 746-759.	6.6	60
132	A Facetâ€Dependent Schottkyâ€Junction Electron Shuttle in a BiVO ₄ {010}–Au–Cu ₂ O Zâ€Scheme Photocatalyst for Efficient Charge Separation. Advanced Functional Materials, 2018, 28, 1801214.	7.8	193
133	Selfâ€Assembly of Threeâ€Dimensional Zincâ€Doped NiCo ₂ O ₄ as Efficient Electrocatalysts for Oxygen Evolution Reaction. Chemistry - A European Journal, 2018, 24, 13002-13008.	1.7	51
134	Photoluminescence and Photocatalysis Properties of Dual-Functional Eu ³⁺ -Doped Anatase Nanocrystals. Journal of Physical Chemistry C, 2017, 121, 2369-2379.	1.5	49
135	Aminated Graphene Oxide Impregnated with Photocatalytic Polyoxometalate for Efficient Adsorption of Dye Pollutants and Its Facile and Complete Photoregeneration. Small, 2017, 13, 1603174.	5.2	37
136	Two uranyl heterocyclic carboxyl compounds with fluorescent properties as high sensitivity and selectivity optical detectors for nitroaromatics. New Journal of Chemistry, 2017, 41, 3073-3081.	1.4	11
137	Sub-10 nm Sr ₂ LuF ₇ :Yb/Er@Sr ₂ GdF ₇ @SrF ₂ Up-Conversion Nanocrystals for Up-Conversion Luminescence–Magnetic Resonance–Computed Tomography Trimodal Bioimaging. ACS Applied Materials & Samp; Interfaces, 2017, 9, 5748-5756.	4.0	25
138	Controllable proton-conducting pathways via situating polyoxometalates in targeting pores of a metal–organic framework. Journal of Materials Chemistry A, 2017, 5, 9611-9617.	5.2	61
139	Controlled synthesis of calcite/vaterite/aragonite and their applications as red phosphors doped with Eu ³⁺ ions. CrystEngComm, 2017, 19, 2758-2767.	1.3	23
140	Rational Design of Superior Microwave Shielding Composites Employing Synergy of Encapsulating Character of Alginate Hydrogels and Task-Specific Components (Ni NPs,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 2	!173 1 21 (Fe	<รบ †ช ⊳3
141	An interfacial engineering approach towards two-dimensional porous carbon hybrids for high performance energy storage and conversion. Journal of Materials Chemistry A, 2017, 5, 1567-1574.	5.2	22
142	Application of Cu ₃ InSnSe ₅ Heteronanostructures as Counter Electrodes for Dye-Sensitized Solar Cells. ACS Applied Materials & Dye-Sensitized Solar Cells. ACS Applied Materials & Dye-Sensitized Solar Cells.	4.0	23
143	Silicon Photoanodes Partially Covered by Ni@Ni(OH) ₂ Coreâ€"Shell Particles for Photoelectrochemical Water Oxidation. ChemSusChem, 2017, 10, 2897-2903.	3.6	58
144	One-dimensional hierarchically porous carbon from biomass with high capacitance as supercapacitor materials. Microporous and Mesoporous Materials, 2017, 251, 77-82.	2.2	59

#	Article	IF	Citations
145	Synthesis, structure and multicolor-tunable luminescence of the dandelion-like SiO ₂ :Ln ³⁺ (Ln = Eu, Tb) nanophosphors. New Journal of Chemistry, 2017, 41, 5688-5695.	1.4	4
146	A microporous yttrium metal–organic framework of an unusual nia topology for high adsorption selectivity of C ₂ H ₂ and CO ₂ over CH ₄ at room temperature. Materials Chemistry Frontiers, 2017, 1, 1982-1988.	3.2	35
147	Controlling the Morphology and Size of GdF ₃ :RE ³⁺ (RE = Dy, Tb, and Sm) by pH Value: Growth Mechanism, Energy Transfer, and Luminescent Properties. Journal of Physical Chemistry C, 2017, 121, 6884-6897.	1.5	17
148	Size controllable synthesis and multicolor fluorescence of SiO 2:Ln 3+ (Ln=Eu, Tb) spherical nanoparticles. Ceramics International, 2017, 43, 4440-4449.	2.3	12
149	Electrospinning fabrication and luminescence properties of Lu ₂ O ₂ S:Eu ³⁺ fibers. CrystEngComm, 2017, 19, 699-707.	1.3	14
150	SiO ₂ @TiO ₂ :Eu ³⁺ and Its Derivatives: Design, Synthesis, and Properties. Crystal Growth and Design, 2017, 17, 6486-6497.	1.4	11
151	Covalent organic frameworks as metal-free heterogeneous photocatalysts for organic transformations. Journal of Materials Chemistry A, 2017, 5, 22933-22938.	5.2	176
152	Highly recyclable Ag NPs/alginate composite beads prepared via one-pot encapsulation method for efficient continuous reduction of p-nitrophenol. New Journal of Chemistry, 2017, 41, 13327-13335.	1.4	27
153	Mg-doped Ta ₃ N ₅ nanorods coated with a conformal CoOOH layer for water oxidation: bulk and surface dual modification of photoanodes. Journal of Materials Chemistry A, 2017, 5, 20439-20447.	5.2	49
154	YF ₃ :RE ³⁺ (RE = Dy, Tb, Eu) Sub-microstructures: Controllable Morphology, Tunable Multicolor, and Thermal Properties. Journal of Physical Chemistry C, 2017, 121, 23080-23095.	1.5	26
155	Facile solvothermal synthesis of novel hetero-structured CoNiâ€"CuO composites with excellent microwave absorption performance. RSC Advances, 2017, 7, 43689-43699.	1.7	22
156	Solvothermal synthesis of three-dimensional, Fe ₂ O ₃ NPs-embedded CNT/N-doped graphene composites with excellent microwave absorption performance. RSC Advances, 2017, 7, 45156-45169.	1.7	70
157	Capture of organic iodides from nuclear waste by metal-organic framework-based molecular traps. Nature Communications, 2017, 8, 485.	5.8	171
158	Interior multi-cavity/surface engineering of alginate hydrogels with polyethylenimine for highly efficient chromium removal in batch and continuous aqueous systems. Journal of Materials Chemistry A, 2017, 5, 17073-17087.	5.2	149
159	Multisite luminescence and photocatalytic properties of TiO2:Sm3+ and TiO2:Sm3+@TiO2/TiO2:Sm3+@SiO2 luminescent enhancement materials. Journal of Alloys and Compounds, 2017, 725, 724-738.	2.8	25
160	La ₂ O ₃ â€Modified LaTiO ₂ N Photocatalyst with Spatially Separated Active Sites Achieving Enhanced CO ₂ Reduction. Advanced Functional Materials, 2017, 27, 1702447.	7.8	87
161	The photoluminescence, thermal properties and tunable color of Na _{1â^'x} Al _{1+2x} Si _{1â^'2x} O ₄ :xCe ³⁺ /Tb ^{3+energy transfer: a single-component multicolor-emitting phosphor. Physical Chemistry Chemical Physics, 2017, 19, 22197-22209.}	sup>/Dy<:	sup>3+
162	Preparation of PEI/CS aerogel beads with a high density of reactive sites for efficient Cr(<scp>vi</scp>) sorption: batch and column studies. RSC Advances, 2017, 7, 40227-40236.	1.7	40

#	Article	IF	Citations
163	Preparation of TiO ₂ Nanospongeâ€Supported Noble Metal Catalysts and Their Application to 4â€Nitrophenol Reduction and CO Oxidation. ChemistrySelect, 2017, 2, 11456-11461.	0.7	4
164	Polyethylenimine-functionalized cellulose aerogel beads for efficient dynamic removal of chromium(<scp>vi</scp>) from aqueous solution. RSC Advances, 2017, 7, 54039-54052.	1.7	91
165	Facile Synthesis of Highly Waterâ€Soluble Lanthanideâ€Doped tâ€LaVO ₄ NPs for Antifake Ink and Latent Fingermark Detection. Small, 2017, 13, 1702305.	5.2	56
166	Rational Design and Functionalization of a Zinc Metal–Organic Framework for Highly Selective Detection of 2,4,6-Trinitrophenol. ACS Applied Materials & Samp; Interfaces, 2017, 9, 23828-23835.	4.0	154
167	Polyoxidovanadate complexes: synthesis, structures and catalytic oxidative bromination of phenol red. Journal of Coordination Chemistry, 2017, 70, 44-59.	0.8	6
168	Synthesis and Positive Inotropic Activity of [1,2,4]Triazolo[4,3-a] Quinoxaline Derivatives Bearing Substituted Benzylpiperazine and Benzoylpiperazine Moieties. Molecules, 2017, 22, 273.	1.7	3
169	A Rheniumâ€Functionalized Metal–Organic Framework as a Singleâ€6ite Catalyst for Photochemical Reduction of Carbon Dioxide. European Journal of Inorganic Chemistry, 2016, 2016, 4358-4362.	1.0	70
170	Bandgap―and Radialâ€Positionâ€Dependent Mnâ€Doped Zn–Cu–In–S/ZnS Core/Shell Nanocrystals. ChemPhysChem, 2016, 17, 752-758.	1.0	10
171	Photoelectric properties and potential nitro derivatives sensing by a highly luminescent of Zn(<scp>ii</scp>) and Cd(<scp>ii</scp>) metal–organic frameworks assembled by the flexible hexapodal ligand, 1,3,5-triazine-2,4,6-triamine hexaacetic acid. RSC Advances, 2016, 6, 36000-36010.	1.7	19
172	Non-injection gram-scale synthesis of cesium lead halide perovskite quantum dots with controllable size and composition. Nano Research, 2016, 9, 1994-2006.	5.8	93
173	A family of uranium–carboxylic acid hybrid materials: synthesis, structure and mixed-dye selective adsorption. New Journal of Chemistry, 2016, 40, 6077-6085.	1.4	14
174	Ultra-small nickel phosphide nanoparticles as a high-performance electrocatalyst for the hydrogen evolution reaction. RSC Advances, 2016, 6, 74895-74902.	1.7	12
175	Facile Synthesis of Water-Soluble YVO ₄ :Eu Nanoparticles for Cu ²⁺ Detection in Aqueous Solution. ChemistrySelect, 2016, 1, 1417-1420.	0.7	18
176	Multifunctional Luminescent Porous Organic Polymer for Selectively Detecting Iron Ions and 1,4-Dioxane via Luminescent Turn-off and Turn-on Sensing. ACS Applied Materials & Samp; Interfaces, 2016, 8, 24097-24103.	4.0	78
177	The Uncommon Channelâ€Based Lnâ€MOFs for Highly Selective Fe ³⁺ Detection and Superior Rhodamineâ€B Adsorption. Chemistry - A European Journal, 2016, 22, 16230-16235.	1.7	70
178	Current Advances in Lanthanideâ€Doped Upconversion Nanostructures for Detection and Bioapplication. Advanced Science, 2016, 3, 1600029.	5.6	147
179	Colloidal preparation and electrocatalytic hydrogen production of MoS2and WS2nanosheets with controllable lateral sizes and layer numbers. Nanoscale, 2016, 8, 15262-15272.	2.8	64
180	Optical detection of small biomolecule thiamines at a micromolar level by highly luminescent lanthanide complexes with tridentate N-heterocyclic ligands. RSC Advances, 2016, 6, 71012-71024.	1.7	18

#	Article	IF	CITATIONS
181	Phase-controlled synthesis of orthorhombic and tetragonal AgGaSe ₂ nanocrystals with high quality. Chemical Communications, 2016, 52, 8581-8584.	2.2	17
182	Porous Pt Nanotubes with High Methanol Oxidation Electrocatalytic Activity Based on Original Bamboo-Shaped Te Nanotubes. ACS Applied Materials & Interfaces, 2016, 8, 16147-16153.	4.0	52
183	Adjusting the Crystallinity of Mesoporous Spinel CoGa ₂ O ₄ for Efficient Water Oxidation. ACS Applied Materials & Samp; Interfaces, 2016, 8, 12887-12893.	4.0	26
184	Dual Functionalized Cages in Metal–Organic Frameworks via Stepwise Postsynthetic Modification. Chemistry of Materials, 2016, 28, 4781-4786.	3.2	55
185	Unravelling Thiol's Role in Directing Asymmetric Growth of Au Nanorod–Au Nanoparticle Dimers. Nano Letters, 2016, 16, 617-623.	4.5	58
186	In situ reduction of well-dispersed nickel nanoparticles on hierarchical nickel silicate hollow nanofibers as a highly efficient transition metal catalyst. RSC Advances, 2016, 6, 32580-32585.	1.7	15
187	Synthesis, structures and luminescence properties of 3d–4f heterometallic–organic frameworks (HMOFs) constructed from different copper halide clusters. CrystEngComm, 2016, 18, 4336-4342.	1.3	14
188	Dendrimer-based preparation and luminescence studies of SiO ₂ fibers doping Eu ³⁺ activator in interstitial sites. RSC Advances, 2016, 6, 16452-16460.	1.7	14
189	Creation of a new type of ion exchange material for rapid, high-capacity, reversible and selective ion exchange without swelling and entrainment. Chemical Science, 2016, 7, 2138-2144.	3.7	72
190	3dâ€"4f Metalâ€"Organic Framework with Dual Luminescent Centers That Efficiently Discriminates the Isomer and Homologues of Small Organic Molecules. Inorganic Chemistry, 2016, 55, 1089-1095.	1.9	72
191	Large Tripodal Spacer Ligands for the Construction of Microporous Metal–Organic Frameworks with Diverse Structures and Photocatalytic Activities. ChemPlusChem, 2015, 80, 1007-1013.	1.3	5
192	Waterâ€Soluble, Monodisperse, Lanthanideâ€Doped Y(Gd)VO ₄ Nanocrystals as Promising Multimodal Bioprobe. European Journal of Inorganic Chemistry, 2015, 2015, 3108-3115.	1.0	15
193	Polyoxometalateâ€Modified Spongeâ€Like Graphene Oxide Monolith with High Protonâ€Conducting Performance. Advanced Functional Materials, 2015, 25, 4480-4485.	7.8	96
194	Oneâ€Step Facile Synthesis and Luminescence Properties of Eu ³⁺ â€Doped Silica Nanowires. European Journal of Inorganic Chemistry, 2015, 2015, 5419-5425.	1.0	2
195	Synthesis, Structure, and Optical Properties of SiO2:Eu3+Nanowires. European Journal of Inorganic Chemistry, 2015, 2015, 1871-1876.	1.0	2
196	Synthesis, Structural Characterization and Preliminary Biological Studies of Several Heterocyclic Transition Metal Carbonyl Complexes. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 2452-2459.	0.6	5
197	Single-phase dual emissive Cu:CdS–ZnSe core–shell nanocrystals with "zero self-absorption―and their application in white light emitting diodes. Journal of Materials Chemistry C, 2015, 3, 3614-3622.	2.7	23
198	A facile synthesis of water-soluble BaYF5:Ln3+ NCs with excellent luminescent properties as promising contrast agent for dual-modal bioimaging. Inorganic Chemistry Communication, 2015, 62, 11-14.	1.8	6

#	Article	IF	CITATIONS
199	Facile Synthesis of Hierarchical Magnesium Silicate Hollow Nanofibers Assembled by Nanosheets as an Efficient Adsorbent. ChemPlusChem, 2015, 80, 544-548.	1.3	19
200	Colloidal Synthesis of Quaternary Wurtzite Cu ₃ AlSnS ₅ Nanocrystals and Their Photoresponsive Properties. ChemPlusChem, 2015, 80, 652-655.	1.3	2
201	Dual Emissive Cu:InP/ZnS/InP/ZnS Nanocrystals: Single-Source "Greener―Emitters with Flexibly Tunable Emission from Visible to Near-Infrared and Their Application in White Light-Emitting Diodes. Chemistry of Materials, 2015, 27, 1405-1411.	3.2	90
202	Metal–Organic Framework Based upon the Synergy of a Brønsted Acid Framework and Lewis Acid Centers as a Highly Efficient Heterogeneous Catalyst for Fixed-Bed Reactions. Journal of the American Chemical Society, 2015, 137, 4243-4248.	6.6	242
203	Large-scale synthesis of single-source, thermally stable, and dual-emissive Mn-doped Zn–Cu–In–S nanocrystals for bright white light-emitting diodes. Nano Research, 2015, 8, 3316-3331.	5.8	46
204	Syntheses, structures, luminescence and magnetic properties of eleven coordination polymers constructed by a N,N′-sulfuryldiimidazole ligand. CrystEngComm, 2015, 17, 5054-5065.	1.3	18
205	Syntheses, topological structures and properties of six metal–organic frameworks constructed from a flexible tetracarboxylate ligand. CrystEngComm, 2015, 17, 3162-3170.	1.3	19
206	Synthesis, structures, and catalytic studies of new copper(II) complexes with arene-linked pyrazolyl methane ligands. Journal of Coordination Chemistry, 2015, 68, 1544-1558.	0.8	3
207	Crystal Facets Make a Profound Difference in Polyoxometalate-Containing Metal–Organic Frameworks as Catalysts for Biodiesel Production. Journal of the American Chemical Society, 2015, 137, 12697-12703.	6.6	160
208	Bifunctional MOF heterogeneous catalysts based on the synergy of dual functional sites for efficient conversion of CO ₂ under mild and co-catalyst free conditions. Journal of Materials Chemistry A, 2015, 3, 23136-23142.	5.2	175
209	Confined growth of CdSe quantum dots in colloidal mesoporous silica for multifunctional nanostructures. Science China Materials, 2015, 58, 481-489.	3.5	8
210	UO ₂ ²⁺ -amino hybrid materials: structural variation and photocatalysis properties. CrystEngComm, 2015, 17, 642-652.	1.3	27
211	A new metallate phase of V 2 O 5 crystalline microstructure achieved in a facile route: Synthesis, characterization, and measurement in catalytic reactions. Journal of Colloid and Interface Science, 2015, 438, 122-129.	5.0	1
212	Photocatalytic Application of 4f–5f Inorganic–Organic Frameworks: Influence of Lanthanide Contraction on the Structure and Functional Properties of a Series of Uranyl–Lanthanide Complexes. ChemPlusChem, 2014, 79, 1304-1315.	1.3	32
213	Structural Interconversion of Bimetallic Carbonyl Clusters Âłnduced by a NHC Ligand and Its Selectivity on Fragments. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 1983-1986.	0.6	0
214	Synthesis and luminescence properties of Eu(III)-doped silica nanorods based on the sol–gel process. Journal of Sol-Gel Science and Technology, 2014, 69, 536-543.	1.1	16
215	Anion effects on the structures and magnetic properties of binuclear lanthanide single-molecule magnets. Dalton Transactions, 2014, 43, 1238-1245.	1.6	49
216	Metal-Cation-Directed <i>de Novo</i> Assembly of a Functionalized Guest Molecule in the Nanospace of a Metal–Organic Framework. Journal of the American Chemical Society, 2014, 136, 1202-1205.	6.6	168

#	Article	IF	CITATIONS
217	Solvothermal synthesis, structures, and gas adsorption properties of two cadmium-organic frameworks. Inorganic Chemistry Communication, 2014, 39, 131-134.	1.8	12
218	Histidine-Derived Nontoxic Nitrogen-Doped Carbon Dots for Sensing and Bioimaging Applications. Langmuir, 2014, 30, 13542-13548.	1.6	141
219	Mercury nano-trap for effective and efficient removal of mercury(II) from aqueous solution. Nature Communications, 2014, 5, 5537.	5.8	481
220	Hydrothermal Fabrication and Luminescence Properties of One-Dimensional TiO2:Eu3+Spindlelike Nanorods. European Journal of Inorganic Chemistry, 2014, 2014, 3305-3311.	1.0	10
221	A fast synthesis of hierarchical yolk–shell copper hydroxysulfates at room temperature with adjustable sizes. CrystEngComm, 2014, 16, 2520.	1.3	14
222	Investigating the interaction of dye molecules with graphene oxide by using a surface plasmon resonance technique. RSC Advances, 2014, 4, 50789-50794.	1.7	18
223	A simple solution-phase approach to synthesize high quality ternary AgInSe2 and band gap tunable quaternary AgIn(S1â^'xSex)2 nanocrystals. Nanoscale, 2014, 6, 6782.	2.8	42
224	Proton conductive watery channels constructed by Anderson polyanions and lanthanide coordination cations. Dalton Transactions, 2014, 43, 14749-14755.	1.6	30
225	Three metal–organic frameworks based on the semirigid V-shaped 5-(3-amino-tetrazole-5-phenoxy)-isophthalic acid ligand: syntheses, topological structures and properties. CrystEngComm, 2014, 16, 4382.	1.3	24
226	High storage capacity and separation selectivity for C ₂ hydrocarbons over methane in the metal–organic framework Cu–TDPAT. Journal of Materials Chemistry A, 2014, 2, 15823-15828.	5.2	102
227	An N-rich metal–organic framework with an rht topology: high CO2 and C2 hydrocarbons uptake and selective capture from CH4. Chemical Communications, 2014, 50, 5031.	2.2	137
228	Introduction of π-Complexation into Porous Aromatic Framework for Highly Selective Adsorption of Ethylene over Ethane. Journal of the American Chemical Society, 2014, 136, 8654-8660.	6.6	383
229	Synthesis, crystal structure, photoluminescence property and photoelectronic behavior of two uranyl-organic frameworks constructed from 1, 2, 4, 5-benzenetetracarboxylic acid as ligand. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 123, 267-272.	2.0	33
230	Reversible switching of slow magnetic relaxation in a classic lanthanide metal–organic framework system. Chemical Communications, 2013, 49, 8244.	2.2	72
231	Facile Synthesis of a Nanocrystalline Metal–Organic Framework Impregnated with a Phosphovanadomolybdate and Its Remarkable Catalytic Performance in Ultradeep Oxidative Desulfurization. ChemCatChem, 2013, 5, 3086-3091.	1.8	100
232	A dual functional MOF as a luminescent sensor for quantitatively detecting the concentration of nitrobenzene and temperature. Chemical Communications, 2013, 49, 8964.	2.2	335
233	A performance study of enhanced visible-light-driven photocatalysis and magnetical protein separation of multifunctional yolk–shell nanostructures. Journal of Materials Chemistry A, 2013, 1, 10030.	5.2	54
234	Bromoperoxidase mimic as catalysts for oxidative brominationâ€"synthesis, structures and properties of the diversified oxidation state of vanadium(iii, iv and v) complexes with pincer N-heterocycle ligands. CrystEngComm, 2013, 15, 5561.	1.3	37

#	Article	IF	Citations
235	Homogeneous core/shell Bi2WO6 spherical photocatalysts: their controlled synthesis and enhanced visible-light photocatalytic performances. RSC Advances, 2013, 3, 6631.	1.7	12
236	Synthesis, structure, and surface photovoltage properties of a series of novel d7–d10 metal complexes with pincer N-heterocycle ligands. RSC Advances, 2013, 3, 16021.	1.7	18
237	Growth orientation, shape evolution of monodisperse PbSe nanocrystals and their use in optoelectronic devices. CrystEngComm, 2013, 15, 597-603.	1.3	34
238	Microwave-assisted synthesis and up–down conversion luminescent properties of multicolor hydrophilic LaF ₃ :Ln ³⁺ nanocrystals. Dalton Transactions, 2013, 42, 2015-2022.	1.6	75
239	Synthesis, structures, and magnetic properties of a family of 3d–4f [Na2Fe6Ln2] complexes (Ln = Y, Gd) Tj ETC 1039-1046.	2q1 1 0.78 1.6	34314 rgBT 21
240	Two three-dimensional metal–organic frameworks constructed by thiazole-spaced pyridinecarboxylates exhibiting selective gas sorption or antiferromagnetic coupling. New Journal of Chemistry, 2013, 37, 425-430.	1.4	10
241	Synthesis of various metal selenide nanostructures using the novel selenium precursor 1,5-bis(3-methylimidazole-2-selone)pentane. CrystEngComm, 2013, 15, 6483.	1.3	9
242	One-step fabrication of 3D hierarchical Ni-incorporated \hat{l}^2 -Co(OH)2 assembled by 2D center disk and 1D length-tunable brush. RSC Advances, 2013, 3, 2604.	1.7	7
243	Synthesis, Xâ€ray Structures, and Luminescent Properties of Three Organically Templated Copper(I) Halides via ⟨i⟩in situ⟨ i⟩ Solvothermal Reduction Reactions. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 611-617.	0.6	12
244	Inspiration from old molecules: field-induced slow magnetic relaxation in three air-stable tetrahedral cobalt(ii) compounds. Chemical Communications, 2013, 49, 5289.	2.2	128
245	Aqueous phase synthesis of upconversion nanocrystals through layer-by-layer epitaxial growth for in vivo X-ray computed tomography. Nanoscale, 2013, 5, 6950.	2.8	71
246	An unusual copper(i) halide-based metal–organic framework with a cationic framework exhibiting the release/adsorption of iodine, ion-exchange and luminescent properties. Dalton Transactions, 2013, 42, 7562.	1.6	71
247	Multi-functional d10 metal–organic materials based on bis-pyrazole/pyridine ligands supported by a 2,6-di(3-pyrazolyl)pyridine with different spanning flexible dicarboxylate ligands: synthesis, structure, photoluminescent and catalytic properties. CrystEngComm, 2013, 15, 9135.	1.3	27
248	Influence of F ^{â€} doping on the microstructure, surface morphology and electrochemical properties of the lead dioxide electrode. Surface and Interface Analysis, 2013, 45, 715-721.	0.8	22
249	{Ta ₁₂ }/{Ta ₁₆ } Cluster-Containing Polytantalotungstates with Remarkable Photocatalytic H ₂ Evolution Activity. Journal of the American Chemical Society, 2012, 134, 19716-19721.	6.6	164
250	Design and construction of coordination polymers based on 2,2′-dinitro-4,4′-biphenyldicarboxylate and semi-rigid N-donor ligands: diverse structures and magnetic properties. Dalton Transactions, 2012, 41, 2677.	1.6	29
251	Aptamer optical biosensor without bio-breakage using upconversion nanoparticles as donors. Chemical Communications, 2012, 48, 1156-1158.	2.2	55
252	Synthesis, Structures, and Magnetic Properties of Three Fluoride-Bridged Lanthanide Compounds: Effect of Bridging Fluoride lons on Magnetic Behaviors. Inorganic Chemistry, 2012, 51, 7529-7536.	1.9	53

#	Article	IF	Citations
253	Hydrophilic, Upconverting, Multicolor, Lanthanideâ€Doped NaGdF ₄ Nanocrystals as Potential Multifunctional Bioprobes. Chemistry - A European Journal, 2012, 18, 11641-11646.	1.7	123
254	Two Metal–Organic Frameworks Constructed from One-Dimensional Cobalt(II) Ferrimagnetic Chains with Alternating Antiferromagnetic/Ferromagnetic and AF/AF/FM Interaction: Synthesis, Structures, and Magnetic Properties. Inorganic Chemistry, 2012, 51, 6813-6820.	1.9	45
255	A facile synthesis and photoluminescence properties of water-dispersible Re3+ doped CeF3 nanocrystals and solid nanocomposites with polymers. Dalton Transactions, 2012, 41, 4890.	1.6	44
256	Synthesis, structures and luminescent properties of cadmium(ii) metal organic frameworks based on 3-pyrid-4-ylbenzoic acid, 4-pyrid-4-ylbenzoic acid ligands. CrystEngComm, 2012, 14, 4664.	1.3	37
257	Shape-controlled synthesis of polyhedral 50-facet Cu2O microcrystals with high-index facets. CrystEngComm, 2012, 14, 4431.	1.3	70
258	A strategy toward constructing a bifunctionalized MOF catalyst: post-synthetic modification of MOFs on organic ligands and coordinatively unsaturated metal sites. Chemical Communications, 2012, 48, 6151.	2.2	204
259	A facile route for nitrogen-doped hollow graphitic carbon spheres with superior performance in supercapacitors. Journal of Materials Chemistry, 2012, 22, 13464.	6.7	202
260	A Facile Approach for Transferring PbS Colloidal Photonic Structures into Alkanol Solutions and Composite Solid Films. European Journal of Inorganic Chemistry, 2012, 2012, 1204-1209.	1.0	8
261	Enhanced Binding Affinity, Remarkable Selectivity, and High Capacity of CO ₂ by Dual Functionalization of a <1>rht â€₹ype Metal–Organic Framework. Angewandte Chemie - International Edition, 2012, 51, 1412-1415.	7.2	430
262	Hydrothermal synthesis, crystal structure, and photoluminescence of novel lanthanide metal organic frameworks constructed from 1,4-benzene-dicarboxylic acid and 1,2,4,5-benzenetetracarboxylic acid as ligands. Structural Chemistry, 2012, 23, 275-285.	1.0	18
263	Coordination polymers constructed by 1,3-bi(4-pyridyl)propane with four different conformations and 2,2â \in 2-dinitro-4,4â \in 2-biphenyldicarboxylate ligands: the effects of metal ions. CrystEngComm, 2011, 13, 1291-1298.	1.3	51
264	Design and construction of coordination polymers based on $2,2\hat{a}\in^2$ -dinitro- $4,4\hat{a}\in^2$ -biphenyldicarboxylate and imidazole-based ligands: The effect of ligand length and metal ions. CrystEngComm, 2011, 13, 4592.	1.3	40
265	Breakthrough in concentration quenching threshold of upconversion luminescence via spatial separation of the emitter doping area for bio-applications. Chemical Communications, 2011, 47, 11957.	2.2	86
266	Design and construction of coordination polymers by 2,2′-dinitro-4,4′-biphenyldicarboxylate and imidazole-based ligands: diverse structures based on different metal ions. CrystEngComm, 2011, 13, 2457.	1.3	26
267	Synthesis and structure of a novel tridentate chiral-NHC ligand precursor. Heterocyclic Communications, 2011, 17, .	0.6	0
268	Synthesis and characterization of two 3-D polymeric lanthanide complexes constructed from 1,2,4,5-benzenetetracarboxylic acid. Journal of Coordination Chemistry, 2011, 64, 3767-3780.	0.8	10
269	A novel family of 3D photoluminescent lanthanide–bta–flexible MOFs constructed from 1,2,4,5-benzenetetracarboxylic acid and different spanning of dicarboxylate acid ligands. CrystEngComm, 2011, 13, 3884.	1.3	66
270	General Approach to Well-Defined Perovskite MTiO ₃ (M = Ba, Sr, Ca, and Mg) Nanostructures. Journal of Physical Chemistry C, 2011, 115, 3918-3925.	1.5	96

#	Article	IF	Citations
271	Hetero-nanostructure of silver nanoparticles on MO x (M = Mo, Ti and Si) and their applications. Science China Chemistry, 2011, 54, 865.	4.2	11
272	Two Coordination Polymers with Rare Topologies Based on Copper(II) and Ligands Generated by In Situ Reactions. European Journal of Inorganic Chemistry, 2011, 2011, 35-38.	1.0	13
273	Solvothermal Synthesis and Structural Characterisation of Metalâ€Organic Frameworks with Paddleâ€Wheel Zinc Carboxylate Clusters and Mixed Ligands. European Journal of Inorganic Chemistry, 2011, 2011, 2712-2719.	1.0	48
274	Synthesis and Catalytic Properties of a Heterocyclic–Carbene Complex of Palladium. Journal of Chemical Research, 2011, 35, 161-162.	0.6	8
275	Synthesis, structure and antitumor activity of dibutyltin oxide complex with 5-fluorouracil derivatives. Chinese Journal of Chemistry, 2010, 19, 1141-1145.	2.6	3
276	Hydrothermal Synthesis and Characterization of a One-Dimensional Copper (I) Halide Cluster with 1,10-Phenanthroline. Chinese Journal of Chemistry, 2010, 20, 560-563.	2.6	3
277	Hydrothermal Syntheses, Supramolecular Structures and the Third-order Non-linear Optical Properties of Three Copper (I) Halide Amine Complexes Connected via Secondary Bonding Interactions. Chinese Journal of Chemistry, 2010, 20, 851-857.	2.6	4
278	Resolving the enigma of prebiotic COP bond formation: Prebiotic hydrothermal synthesis of important biological phosphate esters. Heteroatom Chemistry, 2010, 21, 161-167.	0.4	16
279	A novel synthetic route to synthesize 2,4,8,10-tetraoxaspiro[5.5]-undecane from formaldehyde under hydrothermal conditions. Journal of Heterocyclic Chemistry, 2010, 47, NA-NA.	1.4	2
280	Synthesis and Crystal Structure of Novel Coordination Polymers with Nitrilotripropionic Acid. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2010, 636, 1585-1590.	0.6	8
281	Design and Construction of Coordination Polymers by 4-Amino-3,5-bis($\langle i \rangle n \langle i \rangle$ -pyridyl)-1,2,4-triazole ($\langle i \rangle n \langle i \rangle$ = 2, 3, 4) Isomers in a Copper(I) Halide System: Diverse Structures Tuned by Isomeric and Anion Effects. Crystal Growth and Design, 2010, 10, 2192-2201.	1.4	53
282	Two hydrogen-bond-cross-linked molybdenum (VI) network polymers: synthesis, crystal structures and cyclooctene epoxidation with H2O2. Structural Chemistry, 2009, 20, 869-876.	1.0	10
283	Influence of noncovalent intermolecular interactions on crystal packing: syntheses and crystal structures of three layered $Zn(ii)/1,2,4$ -triazole/carboxylate coordination polymers. CrystEngComm, 2009, 11, 1579.	1.3	10
284	Three oxidation states and atomic-scale p–n junctions in manganese perovskite oxide from hydrothermal systems. Journal of Materials Science, 2008, 43, 2131-2137.	1.7	14
285	Synthesis of Copper Halide Coordination Polymers with Ligands Formed by In Situ Cyclization of 2-Aminopyrimidine and Ethanol. European Journal of Inorganic Chemistry, 2008, 2008, 1035-1038.	1.0	14
286	Hydrothermal Synthesis, Structural Characterisations, and Photoluminescence Properties of Four Inorganic-Organic Hybrid Compounds in the Indium/Gallium Iodate Family. European Journal of Inorganic Chemistry, 2008, 2008, 2522-2529.	1.0	11
287	Hydrothermal synthesis and characterization of metal–organic networks with helical units in a mixed ligand system. CrystEngComm, 2008, 10, 888.	1.3	46
288	A coordination polymer of copper(i) iodide with 654 topology constructed from Cu4I4(DABCO)4. CrystEngComm, 2007, 9, 984.	1.3	51

#	Article	IF	CITATIONS
289	Synthesis, Structures and Electrochemical Properties of Nitro- and Amino-Functionalized Diiron Azadithiolates as Active Site Models of Fe-Only Hydrogenases. Chemistry - A European Journal, 2005, 11, 803-803.	1.7	0
290	A Bicapped α-Keggin Unit-Supported Transition Metal Complex: Hydrothermal Synthesis and Characterization of [Cu(en)2(H2O)]2[Cu(en)2]0.5[Mo8V7O42{Cu(en)2}]. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2005, 631, 1528-1531.	0.6	7
291	Polymeric diaquabis [\hat{l} 1/44-1,3,5-benzenetricarboxylato($3\hat{a}$ 6)](\hat{l} 1/4-4,4 \hat{a} 6-bipyridine)trizinc(II). Acta Crystallographica Section C: Crystal Structure Communications, 2003, 59, m337-m338.	0.4	3
292	Photoluminescent and photovoltaic properties observed in a zinc borate Zn2(OH)BO3. Journal of Materials Chemistry, 2003, 13, 2227-2233.	6.7	49
293	A Vanadium(IV) Phosphite with a Pillared Layered Structure: Hydrothermal Synthesis and Characterization of (VO)4(4,4â€⁻-bpy)2(HPO3)4. Inorganic Chemistry, 2003, 42, 2357-2361.	1.9	71
294	Hydrothermal synthesis and characterization of the first oxalate–bta mixed-ligand three-dimensional frameworks: {[M2(Âμ8-bta)(Âμ2-C2O4)]·(H3O)2(H2O)2}n (M = Coll, Fell; bta =) Tj ETQq0 0 0 rgBT /Overlock 10	Tf650 537	7 &d (benze
295	Hydrothermal synthesis and structure of [C2N2H10][La2(H2O)4(SO4)4] \hat{A} ·2H2O, a new organically templated rare earth sulfate with a layer structure. Dalton Transactions, 2003, , 940-943.	1.6	67
296	Synthesis and X-ray crystal structures of two new alkaline-earth metal borates: SrBO2(OH) and Ba3B6O9(OH)6. Dalton Transactions RSC, 2002, , 2031-2035.	2.3	31
297	Hydrothermal synthesis and characterization of a new inorganic–organic hybrid layered zinc phosphate–phosphite (C6H15N2)2Zn4(PO4)2(HPO3)2. Dalton Transactions RSC, 2002, , 4060-4063.	2.3	52
298	First coordination complex-linked vanadium selenite, [Cu(phen)]2V2Se2O11: hydrothermal synthesis and crystal structure. Dalton Transactions RSC, 2002, , 1873-1874.	2.3	25
299	(Ć ₁₄ N ₁₄ H ₆₃) Na (H ₂ Mo ₆ P ₄ O ₃₁) ₂ · 8H ₂ O and (C ₁₄ N ₁₄ H ₆) Na (H ₂ Mo ₆ P ₄ O ₃₁) ₂ · 5H ₂ O.	2.6	2
300	Chinese Journal of Chemistry, 2002, 20, 858-864. SYNTHESIS AND X-RAY CRYSTAL STRUCTURES OF LOW-DIMENSIONAL BORATES FROM HYDROTHERMAL AND SOLVOTHERMAL SYSTEMS., 2002,,.		0
301	A new layered aluminophosphate [C4H12N2][Al2P2O8(OH)2] templated by piperazine. Journal of Materials Chemistry, 2001, 11, 1898-1902.	6.7	28
302	Synthesis and characterization of a new three-dimensional aluminophosphate [Al11P12O48][C4H12N2][C4H11N2] with an Al/P ratio of 11â€â°¶â€12. Dalton Transactions RSC, 2001, , 180	0 9 -1812.	26
303	Hydrothermal Synthesis of New Pure Beryllophosphate Molecular Sieve Phases from Concentrated Amines. Chemistry of Materials, 2001, 13, 2042-2048.	3.2	42
304	Novel Coordination Polymers with Mixed Ligands and Orientated Enantiomers. Inorganic Chemistry, 2001, 40, 5312-5313.	1.9	58
305	Synthesis and Characterization of Ethylenediammonium Molybdenum Thiocomplex [H ₃ NCH ₂ CH ₂ NH ₃][Mo ₃ S ₁₃]. Chinese Journal of Chemistry, 2001, 19, 681-688.	2.6	4
306	Hydrothermal synthesis and crystal structure of a layered vanadium oxide with an interlayer metal co-ordination complex: Cd[C3N2H11]2[V8O20]. Dalton Transactions RSC, 2000, , 275-278.	2.3	79

#	ARTICLE	IF	CITATIONS
307	A novel open-framework aluminophosphate [AlP2O6(OH)2][H3O] containing propeller-like chiral motifs. Chemical Communications, 2000, , 1431-1432.	2.2	37
308	Synthesis and structural characterisation of a new layered aluminophosphate [C3H12N2][Al2P2O8(OH)2]·H2O. Dalton Transactions RSC, 2000, , 1981-1984.	2.3	15
309	A new layered aluminophosphate [Al2P4O16][C6H22N4][C2H10N2] with 4.12-net porous sheets. Dalton Transactions RSC, 2000, , 1979-1980.	2.3	15
310	Hydrothermal synthesis and characterization of a new layered zinc phosphate intercalated with fully-protonated triethylenetetramine $[Zn2(HPO4)3]2\hat{a}^{\gamma}[(C6N4H22)0.5]2+$. Journal of Materials Chemistry, 2000, 10, 1451-1455.	6.7	45
311	NDIs derivativesâ€based framework materials supportedÂby series of aromatic carboxylic acids and application of multifunctional fluorescence sensors. ChemPhotoChem, 0, , .	1.5	O