
Takuya Yamamoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2258716/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Topological polymer chemistry: a cyclic approach toward novel polymer properties and functions. Polymer Chemistry, 2011, 2, 1930.	3.9	255
2	Topology-Directed Control on Thermal Stability: Micelles Formed from Linear and Cyclized Amphiphilic Block Copolymers. Journal of the American Chemical Society, 2010, 132, 10251-10253.	13.7	200
3	Tuneable enhancement of the salt and thermal stability of polymeric micelles by cyclized amphiphiles. Nature Communications, 2013, 4, 1574.	12.8	149
4	Cyclic polymers revealing topology effects upon self-assemblies, dynamics and responses. Soft Matter, 2015, 11, 7458-7468.	2.7	130
5	Effective Click Construction of <i>Bridged</i> - and <i>Spiro</i> -Multicyclic Polymer Topologies with Tailored Cyclic Prepolymers (<i>kyklo</i> -Telechelics). Journal of the American Chemical Society, 2010, 132, 14790-14802.	13.7	129
6	Light- and Heat-Triggered Reversible Linear–Cyclic Topological Conversion of Telechelic Polymers with Anthryl End Groups. Journal of the American Chemical Society, 2016, 138, 3904-3911.	13.7	126
7	Enhanced dispersion stability of gold nanoparticles by the physisorption of cyclic poly(ethylene) Tj ETQq1 1 0.784	1314 rgBT 12.8	Ölerlock 10
8	Dynamic Equilibrium of a Supramolecular Dimeric Rhomboid and Trimeric Hexagon and Determination of Its Thermodynamic Constants. Journal of the American Chemical Society, 2003, 125, 12309-12317.	13.7	102
9	Self-Assembly of Flexible Supramolecular Metallacyclic Ensembles:Â Structures and Adsorption Properties of Their Nanoporous Crystalline Frameworks. Journal of the American Chemical Society, 2004, 126, 10645-10656.	13.7	101
10	Coordination-Driven Face-Directed Self-Assembly of Trigonal Prisms. Face-Based Conformational Chirality. Journal of the American Chemical Society, 2008, 130, 7620-7628.	13.7	100
11	Conductive Oneâ€Handed Nanocoils by Coassembly of Hexabenzocoronenes: Control of Morphology and Helical Chirality. Angewandte Chemie - International Edition, 2008, 47, 1672-1675.	13.8	94
12	Stabilization of a Kinetically Favored Nanostructure:Â Surface ROMP of Self-Assembled Conductive Nanocoils from a Norbornene-Appended Hexa-peri-hexabenzocoronene. Journal of the American Chemical Society, 2006, 128, 14337-14340.	13.7	86
13	Synthesis of a Bis(pyridyl)-Substituted Perylene Diimide Ligand and Incorporation into a Supramolecular Rhomboid and Rectangle via Coordination Driven Self-Assembly. Journal of Organic Chemistry, 2005, 70, 797-801.	3.2	77
14	Multimode Diffusion of Ring Polymer Molecules Revealed by a Singleâ€Molecule Study. Angewandte Chemie - International Edition, 2010, 49, 1418-1421.	13.8	76
15	Self-Assembly of Molecular Prisms via an Organometallic "Clip― Organic Letters, 2002, 4, 913-915.	4.6	74
16	Synthesis of Orientationally Isomeric Cyclic Stereoblock Polylactides with Head-to-Head and Head-to-Tail Linkages of the Enantiomeric Segments. ACS Macro Letters, 2012, 1, 902-906.	4.8	74
17	Straightforward synthesis of functionalized cyclic polymers in high yield via RAFT and thiolactone–disulfide chemistry. Polymer Chemistry, 2013, 4, 184-193.	3.9	71
18	A Programmed Polymer Folding:ClickandClipConstruction of DoublyFusedTricyclic and TriplyFusedTetracyclic Polymer Topologies. Journal of the American Chemical Society, 2011, 133, 19694-19697.	13.7	70

Τακυγά Υαμαμότο

#	Article	IF	CITATIONS
19	Alkali Metal Carboxylate as an Efficient and Simple Catalyst for Ring-Opening Polymerization of Cyclic Esters. Macromolecules, 2018, 51, 689-696.	4.8	61
20	Radially Diblock Nanotube:  Site-Selective Functionalization of a Tubularly Assembled Hexabenzocoronene. Journal of the American Chemical Society, 2008, 130, 1530-1531.	13.7	57
21	Structural Characteristics of Amphiphilic Cyclic and Linear Block Copolymer Micelles in Aqueous Solutions. ACS Macro Letters, 2014, 3, 233-239.	4.8	57
22	Constructing a Macromolecular K _{3,3} Graph through Electrostatic Self-Assembly and Covalent Fixation with a Dendritic Polymer Precursor. Journal of the American Chemical Society, 2014, 136, 10148-10155.	13.7	53
23	Photoinduced topological transformation of cyclized polylactides for switching the properties of homocrystals and stereocomplexes. Polymer Chemistry, 2015, 6, 3591-3600.	3.9	51
24	Self-Assembly of Nanoscale Supramolecular Truncated Tetrahedra. Journal of Organic Chemistry, 2005, 70, 4861-4864.	3.2	49
25	Synthesis of Well-Defined Three- and Four-Armed Cage-Shaped Polymers via "Topological Conversion― from Trefoil- and Quatrefoil-Shaped Polymers. Macromolecules, 2017, 50, 97-106.	4.8	43
26	Synthesis of cyclic polymers and topology effects on their diffusion and thermal properties. Polymer Journal, 2013, 45, 711-717.	2.7	40
27	Folding Construction of a Pentacyclic Quadruply <i>fused</i> Polymer Topology with Tailored <i>kyklo</i> â€Telechelic Precursors. Angewandte Chemie - International Edition, 2015, 54, 8688-8692.	13.8	36
28	Facile and Efficient Modification of Polystyrene- <i>block</i> -poly(methyl methacrylate) for Achieving Sub-10 nm Feature Size. Macromolecules, 2018, 51, 8064-8072.	4.8	35
29	Single-Molecule Study on Polymer Diffusion in a Melt State: Effect of Chain Topology. Analytical Chemistry, 2013, 85, 7369-7376.	6.5	33
30	Multicyclic Polymer Synthesis through Controlled/Living Cyclopolymerization of α,ï‰-Dinorbornenyl-Functionalized Macromonomers. Macromolecules, 2018, 51, 3855-3864.	4.8	33
31	Effective Synthesis of Polymer Catenanes by Cooperative Electrostatic/Hydrogen-Bonding Self-Assembly and Covalent Fixation. Macromolecules, 2010, 43, 168-176.	4.8	32
32	Construction of Double-Eight and Double-Trefoil Polymer Topologies with Core-Clickable <i>kyklo</i> -Telechelic Precursors. Macromolecules, 2014, 47, 8214-8223.	4.8	30
33	One-Step Production of Amphiphilic Nanofibrillated Cellulose Using a Cellulose-Producing Bacterium. Biomacromolecules, 2017, 18, 3432-3438.	5.4	29
34	Microphase separation of carbohydrate-based star-block copolymers with sub-10 nm periodicity. Polymer Chemistry, 2019, 10, 1119-1129.	3.9	29
35	Programmed Polymer Folding with Periodically Positioned Tetrafunctional Telechelic Precursors by Cyclic Ammonium Salt Units as Nodal Points. Journal of the American Chemical Society, 2019, 141, 7526-7536.	13.7	29
36	A versatile synthetic strategy for macromolecular cages: intramolecular consecutive cyclization of star-shaped polymers. Chemical Science, 2019, 10, 440-446.	7.4	28

#	Article	IF	CITATIONS
37	Folding Construction of Doubly Fused Tricyclic, β- and γ-Graph Polymer Topologies with kyklo-Telechelic Precursors Obtained through an Orthogonal Click/ESA-CF Protocol. Macromolecules, 2013, 46, 7303-7315.	4.8	27
38	ATRP–RCMpolymercyclization: synthesis of amphiphilic cyclic polystyrene-b-poly(ethylene oxide) copolymers. Polymer Chemistry, 2012, 3, 1903-1909.	3.9	26
39	Chain-End Functionalization with a Saccharide for 10 nm Microphase Separation: "Classical― PS- <i>b</i> -PMMA versus PS- <i>b</i> -PMMA-Saccharide. Macromolecules, 2018, 51, 8870-8877.	4.8	25
40	Carbohydrates as Hard Segments for Sustainable Elastomers: Carbohydrates Direct the Self-Assembly and Mechanical Properties of Fully Bio-Based Block Copolymers. Macromolecules, 2020, 53, 5408-5417.	4.8	24
41	Click Construction of Spiro―and Bridgedâ€Quatrefoil Polymer Topologies with Kykloâ€Telechelics Having an Azide Group. Macromolecular Rapid Communications, 2014, 35, 412-416.	3.9	23
42	Phase separation and self-assembly of cyclic amphiphilic block copolymers with a main-chain liquid crystalline segment. Polymer Chemistry, 2015, 6, 4167-4176.	3.9	22
43	Construction of Hybrid-Multicyclic Polymer Topologies Composed of Dicyclic Structure Units by Means of An ESA-CF/Click-Linking Protocol. Macromolecules, 2016, 49, 4076-4087.	4.8	21
44	Synthesis and Topological Conversion of an 8-shaped Poly(THF) Having a Metathesis-Cleavable Unit at the Focal Position. Macromolecules, 2010, 43, 7062-7067.	4.8	19
45	Macrocyclic poly(<i>p</i> -phenylenevinylene)s by ring expansion metathesis polymerisation and their characterisation by single-molecule spectroscopy. Chemical Science, 2018, 9, 2934-2941.	7.4	19
46	Rapid access to discrete and monodisperse block co-oligomers from sugar and terpenoid toward ultrasmall periodic nanostructures. Communications Chemistry, 2020, 3, .	4.5	19
47	An organocatalytic ring-opening polymerization approach to highly alternating copolymers of lactic acid and glycolic acid. Polymer Chemistry, 2020, 11, 6365-6373.	3.9	18
48	Metalâ€Organic Frameworks for Practical Separation of Cyclic and Linear Polymers. Angewandte Chemie - International Edition, 2021, 60, 11830-11834.	13.8	18
49	Synthesis, Isolation, and Properties of All Head-to-Tail Cyclic Poly(3-hexylthiophene): Fully Delocalized Exciton over the Defect-Free Ring Polymer. Macromolecules, 2018, 51, 9284-9293.	4.8	17
50	Topological polymer chemistry by programmed self-assembly and effective linking chemistry. European Polymer Journal, 2011, 47, 535-541.	5.4	16
51	NMR Relaxometry for the Thermal Stability and Phase Transition Mechanism of Flower-like Micelles from Linear and Cyclic Amphiphilic Block Copolymers. Langmuir, 2015, 31, 8739-8744.	3.5	16
52	Micelle Structure Details and Stabilities of Cyclic Block Copolymer Amphiphile and Its Linear Analogues. Polymers, 2019, 11, 163.	4.5	16
53	A facile strategy for manipulating micellar size and morphology through intramolecular cross-linking of amphiphilic block copolymers. Polymer Chemistry, 2017, 8, 3647-3656.	3.9	15
54	Facile synthesis of poly(trimethylene carbonate) by alkali metal carboxylate-catalyzed ring-opening polymerization. Polymer Journal, 2020, 52, 103-110.	2.7	15

Τακυγά Υαμαμότο

#	Article	IF	CITATIONS
55	Suzuki–Miyaura catalyst-transfer polycondensation of triolborate-type fluorene monomer: toward rapid access to polyfluorene-containing block and graft copolymers from various macroinitiators. Polymer Chemistry, 2020, 11, 6832-6839.	3.9	15
56	Downsizing feature of microphase-separated structures <i>via</i> intramolecular crosslinking of block copolymers. Chemical Science, 2019, 10, 3330-3339.	7.4	14
57	Formation and Properties of Vesicles from Cyclic Amphiphilic PS–PEO Block Copolymers. Langmuir, 2016, 32, 10344-10349.	3.5	13
58	ESA-CF Synthesis of Linear and Cyclic Polymers Having Densely Appended Perylene Units and Topology Effects on Their Thin-Film Electron Mobility. Macromolecules, 2016, 49, 5831-5840.	4.8	13
59	Programmed folding into spiro-multicyclic polymer topologies from linear and star-shaped chains. Communications Chemistry, 2020, 3, .	4.5	13
60	Oneâ€Shot Intrablock Crossâ€Linking of Linear Diblock Copolymer to Realize Janusâ€Shaped Singleâ€Chain Nanoparticles. Angewandte Chemie - International Edition, 2021, 60, 18122-18128.	13.8	13
61	Hydrogel formation by the â€~topological conversion' of cyclic PLA–PEO block copolymers. Polymer Journal, 2016, 48, 391-398.	2.7	12
62	Trimethyl Glycine as an Environmentally Benign and Biocompatible Organocatalyst for Ring-Opening Polymerization of Cyclic Carbonate. ACS Sustainable Chemistry and Engineering, 2019, 7, 8868-8875.	6.7	12
63	Metallopolymer- <i>block</i> -oligosaccharide for sub-10 nm microphase separation. Polymer Chemistry, 2020, 11, 2995-3002.	3.9	11
64	Improving the mechanical properties of polycaprolactone using functionalized nanofibrillated bacterial cellulose with high dispersibility and long fiber length as a reinforcement material. Composites Part A: Applied Science and Manufacturing, 2022, 158, 106978.	7.6	11
65	Systematic Synthesis of Block Copolymers Consisting of Topological Amphiphilic Segment Pairs from <i>kyklo</i> - and <i>kentro</i> -Telechelic PEO and Poly(THF). ACS Macro Letters, 2013, 2, 427-431.	4.8	10
66	Single-molecule imaging reveals topological isomer-dependent diffusion by 4-armed star and dicyclic 8-shaped polymers. Polymer Chemistry, 2015, 6, 4109-4115.	3.9	10
67	Regioselective Ring-Emitting Esterification on Azacyclohexane Quaternary Salts: A DFT and Synthetic Study for Covalent Fixation of Electrostatic Polymer Self-Assemblies. Journal of Organic Chemistry, 2013, 78, 3086-3094.	3.2	9
68	Concise Click/ESA-CF Synthesis of Periodically-Positioned Trifunctional kyklo-Telechelic Poly(THF)s. Macromolecules, 2015, 48, 6077-6086.	4.8	9
69	Topological "interfacial―polymer chemistry: Dependency of polymer "shape―on surface morphology and stability of layer structures when heating organized molecular films of cyclic and linear block copolymers of <i>n</i> -butyl acrylate-ethylene oxide. Journal of Polymer Science, Part B: Polymer Physics. 2016. 54. 486-498.	2.1	9
70	Detailed Structural Analyses of Nanofibrillated Bacterial Cellulose and Its Application as Binder Material for a Display Device. Biomacromolecules, 2020, 21, 581-588.	5.4	9
71	PEGylation of silver nanoparticles by physisorption of cyclic poly(ethylene glycol) for enhanced dispersion stability, antimicrobial activity, and cytotoxicity. Nanoscale Advances, 2022, 4, 532-545.	4.6	9
72	Highly asymmetric lamellar nanostructures from nanoparticle–linear hybrid block copolymers. Nanoscale, 2020, 12, 16526-16534.	5.6	8

#	Article	IF	CITATIONS
73	Enhanced Self-Assembly and Mechanical Properties of Cellulose-Based Triblock Copolymers: Comparisons with Amylose-Based Triblock Copolymers. ACS Sustainable Chemistry and Engineering, 2021, 9, 9779-9788.	6.7	8
74	Self-Assembled Nanotubes and Nanocoils from ss-Conjugated Building Blocks. , 2008, , 1-27.		7
75	Synthesis of core-fluorescent four-armed star and dicyclic 8-shaped poly(THF)s by electrostatic self-assembly and covalent fixation (ESA–CF) protocol. Reactive and Functional Polymers, 2014, 80, 3-8.	4.1	7
76	Topology effects of cyclic polymers: Controlling the topology for innovative functionalities. Reactive and Functional Polymers, 2018, 132, 43-50.	4.1	7
77	Synthesis and Unimolecular ESA-CF Polymer Cyclization of Zwitterionic Telechelic Precursors. Macromolecules, 2019, 52, 9208-9219.	4.8	7
78	S _N 2 regioselectivity in the esterification of 5- and 7-membered azacycloalkane quaternary salts: a DFT study to reveal the transition state ring conformation prevailing over the ground state ring strain. Organic and Biomolecular Chemistry, 2014, 12, 6717-6724.	2.8	6
79	Synthesis of Î ¹ /4-ABC Tricyclic Miktoarm Star Polymer via Intramolecular Click Cyclization. Polymers, 2018, 10, 877.	4.5	6
80	Self-Assembly of Linear and Cyclic Polylactide Stereoblock Copolymers with a Parallel and Antiparallel Chain Arrangement Distinguishing Their Directions on a Water Surface. Langmuir, 2020, 36, 6216-6221.	3.5	6
81	Comparative Thermodynamic Studies of the Micellization of Amphiphilic Block Copolymers before and after Cyclization. Langmuir, 2022, 38, 5033-5039.	3.5	6
82	A study on emulsion stabilization induced with linear and cyclized polystyrene-poly(ethylene oxide) block copolymer surfactants. Polymer Journal, 2015, 47, 408-412.	2.7	5
83	Installing a functional group into the inactive ω-chain end of PMMA and PS- <i>b</i> -PMMA by terminal-selective transesterification. Polymer Chemistry, 2019, 10, 3390-3398.	3.9	5
84	Effect of hydrogen–deuterium exchange in amide linkages on properties of electrospun polyamide nanofibers. Polymer, 2021, 229, 123994.	3.8	5
85	Densely Arrayed Cage-Shaped Polymer Topologies Synthesized via Cyclopolymerization of Star-Shaped Macromonomers. Macromolecules, 2021, 54, 9079-9090.	4.8	5
86	Topological Polymer Chemistry: New Synthesis of Cyclic and Multicyclic Polymers and <i>Topology Effects</i> Thereby. Kobunshi Ronbunshu, 2011, 68, 782-794.	0.2	4
87	Load-Induced Frictional Transition at a Well-Defined Alkane Loop Surface. Langmuir, 2017, 33, 2396-2401.	3.5	4
88	Cyclization of PEG and Pluronic Surfactants and the Effects of the Topology on Their Interfacial Activity. Langmuir, 2021, 37, 6974-6984.	3.5	4
89	A <i>Twisting</i> Ring Polymer: Synthesis and Thermally Induced Chiroptical Responses of a Cyclic Poly(tetrahydrofuran) Having Axially Chiral Units. Macromolecules, 2017, 50, 5323-5331.	4.8	3
90	Oneâ€Shot Intrablock Crossâ€Linking of Linear Diblock Copolymer to Realize Janusâ€Shaped Singleâ€Chain Nanoparticles. Angewandte Chemie, 2021, 133, 18270-18276.	2.0	3

Τακυγά Υαμαμότο

#	Article	IF	CITATIONS
91	Molecular Arrangement of Organized Molecular Films of Linear and Cyclic Amphiphilic Block Copolymers with Different Shapes. Transactions of the Materials Research Society of Japan, 2014, 39, 79-82.	0.2	3
92	Suzuki–Miyaura Catalyst-Transfer Polycondensation of Triolborate-Type Carbazole Monomers. Polymers, 2021, 13, 4168.	4.5	3
93	Emergence of Functionalities Originating from the Topology of Polymers. Kobunshi Ronbunshu, 2011, 68, 550-561.	0.2	2
94	Effective Synthesis and Crystal Structure of a 24-Membered Cyclic Decanedisulfide Dimer. Chemistry Letters, 2012, 41, 1678-1680.	1.3	2
95	Direct Synthesis of Chainâ€endâ€functionalized Poly(3â€hexylthiophene) without Protecting Groups Using a Zincate Complex. Macromolecular Rapid Communications, 2020, 41, 2000148.	3.9	2
96	Topology-Dependent Interaction of Cyclic Poly(ethylene glycol) Complexed with Gold Nanoparticles against Bovine Serum Albumin for a Colorimetric Change. Langmuir, 2021, , .	3.5	2
97	Topology and Sequence-Dependent Micellization and Phase Separation of Pluronic L35, L64, 10R5, and 17R4: Effects of Cyclization and the Chain Ends. Polymers, 2022, 14, 1823.	4.5	2
98	Fabrication of Ultrafine, Highly Ordered Nanostructures Using Carbohydrate-Inorganic Hybrid Block Copolymers. Nanomaterials, 2022, 12, 1653.	4.1	2
99	SELF-ASSEMBLY AND FUNCTIONS OF CYCLIC POLYMERS. , 2013, , 329-347.		0
100	Synthesis of Cyclic Polymers and Characterization of Their Diffusive Motion in the Melt State at the Single Molecule Level. Journal of Visualized Experiments, 2016, , .	0.3	0
101	Metalâ€Organic Frameworks for Practical Separation of Cyclic and Linear Polymers. Angewandte Chemie, 2021, 133, 11936-11940.	2.0	0
102	Recent Developments in the Synthesis of Cyclic Polymers by Ring-Expansion Polymerization. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2009, 67, 947-948.	0.1	0
103	Dependency of the "Shape" on Surface Morphology of Organized Molecular Films of Cyclic and Linear Block Copolymer of Polyethylene Oxide – Butyl Acrylate. Transactions of the Materials Research Society of Japan, 2014, 39, 83-86.	0.2	0