Caroline Pabst

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2258609/publications.pdf

Version: 2024-02-01

26 1,522 15
papers citations h-index

29 29 3138
all docs docs citations times ranked citing authors

23

g-index

#	Article	IF	CITATIONS
1	Inherited and Somatic Defects in DDX41 in Myeloid Neoplasms. Cancer Cell, 2015, 27, 658-670.	7.7	341
2	Loss of the histone methyltransferase EZH2 induces resistance to multiple drugs in acute myeloid leukemia. Nature Medicine, 2017, 23, 69-78.	15.2	192
3	GPR56 identifies primary human acute myeloid leukemia cells with high repopulating potential in vivo. Blood, 2016, 127, 2018-2027.	0.6	148
4	AML1-ETO requires enhanced C/D box snoRNA/RNP formation to induce self-renewal and leukaemia. Nature Cell Biology, 2017, 19, 844-855.	4.6	132
5	Identification of small molecules that support human leukemia stem cell activity ex vivo. Nature Methods, 2014, 11, 436-442.	9.0	115
6	RAS-pathway mutation patterns define epigenetic subclasses in juvenile myelomonocytic leukemia. Nature Communications, 2017, 8, 2126.	5.8	91
7	Chemo-genomic interrogation of CEBPA mutated AML reveals recurrent CSF3R mutations and subgroup sensitivity to JAK inhibitors. Blood, 2016, 127, 3054-3061.	0.6	70
8	Identification of leukemic and pre-leukemic stem cells by clonal tracking from single-cell transcriptomics. Nature Communications, 2021, 12, 1366.	5. 8	69
9	Adhesion GPCRs in Regulating Immune Responses and Inflammation. Advances in Immunology, 2017, 136, 163-201.	1.1	59
10	A proof of concept phase I/II pilot trial of LSD1 inhibition by tranylcypromine combined with ATRA in refractory/relapsed AML patients not eligible for intensive therapy. Leukemia, 2021, 35, 701-711.	3.3	56
11	Site-specific methylation of 18S ribosomal RNA by SNORD42A is required for acute myeloid leukemia cell proliferation. Blood, 2020, 135, 2059-2070.	0.6	52
12	Hepatic leukemia factor is a novel leukemic stem cell regulator in DNMT3A, NPM1, and FLT3-ITD triple-mutated AML. Blood, 2019, 134, 263-276.	0.6	41
13	Hotspot DNMT3A mutations in clonal hematopoiesis and acute myeloid leukemia sensitize cells to azacytidine via viral mimicry response. Nature Cancer, 2021, 2, 527-544.	5.7	37
14	Transcriptomic landscape of acute promyelocytic leukemia reveals aberrant surface expression of the platelet aggregation agonist Podoplanin. Leukemia, 2018, 32, 1349-1357.	3.3	31
15	The neuropeptide receptor calcitonin receptor-like (CALCRL) is a potential therapeutic target in acute myeloid leukemia. Leukemia, 2019, 33, 2830-2841.	3.3	30
16	CDK7/12/13 inhibition targets an oscillating leukemia stem cell network and synergizes with venetoclax in acute myeloid leukemia. EMBO Molecular Medicine, 2022, 14, e14990.	3.3	14
17	RSPO2 inhibits BMP signaling to promote self-renewal in acute myeloid leukemia. Cell Reports, 2021, 36, 109559.	2.9	10
18	Humoral Responses and Chronic GVHD Exacerbation after COVID-19 Vaccination Post Allogeneic Stem Cell Transplantation. Vaccines, 2022, 10, 330.	2.1	9

#	Article	IF	CITATIONS
19	Vesicular trafficking is a key determinant of the statin response in acute myeloid leukemia. Blood Advances, 2022, 6, 509-514.	2.5	4
20	MiR-193a Is a Negative Regulator of Hematopoietic Stem Cells and Promotes Anti-Leukemic Effects in Acute Myeloid Leukemia. Blood, 2018, 132, 2627-2627.	0.6	3
21	Venetoclax-Azacitidine As Salvage Therapy and Bridge to Allogeneic Cell Transplantation in Relapsed/Refractory AML Compared to Historical Data of the SAL Registry Study. Blood, 2021, 138, 4418-4418.	0.6	3
22	Cooperating mutations: joint forces, novel vulnerabilities. Blood, 2020, 135, 785-787.	0.6	2
23	Transcriptome Analysis Reveals That G Protein-Coupled Receptors Are Potential Diagnostic Markers or Therapeutic Targets in Acute Myeloid Leukemia. Blood, 2015, 126, 3855-3855.	0.6	2
24	A High-Throughput Screen to Identify Compounds Preserving Primary Human AML Stem Cells Ex-Vivo,. Blood, 2011, 118, 3587-3587.	0.6	0
25	Novel Targeting Strategies for Leukemia-Initiating Cells in Myeloid Neoplasms. Blood, 2013, 122, SCI-27-SCI-27.	0.6	0
26	The Novel Leukemia Stem Cell Marker GPR56 Discriminates Leukemic Subclones with Divergent Stem Cell Properties in Human Acute Myeloid Leukemia. Blood, 2015, 126, 1859-1859.	0.6	0