Charles S Wortmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2258262/publications.pdf

Version: 2024-02-01

201674 233421 2,503 111 27 45 citations h-index g-index papers 113 113 113 2218 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Nitrogen response functions targeted to technology extrapolation domains in Ethiopia using CERESâ€maize. Agronomy Journal, 2021, 113, 436-450.	1.8	3
2	Irrigation well water: Essential nutrient contents and other properties. , 2021, 4, e20137.		1
3	Effect of Foliar Micronutrients (B, Mn, Fe, Zn) on Maize Grain Yield, Micronutrient Recovery, Uptake, and Partitioning. Plants, 2021, 10, 528.	3.5	14
4	Perennial grass ley rotations with annual crops in tropical Africa: A review. Agronomy Journal, 2021, 113, 4510-4526.	1.8	6
5	Modeling soil texture and residue management effects on conservation agriculture productivity in Nepal. Soil and Tillage Research, 2021, 213, 105113.	5.6	3
6	Identifying the drivers and predicting the outcome of conservation agriculture globally. Agricultural Systems, 2020, 177, 102692.	6.1	15
7	Improvement of smallholder farming systems in Africa. Agronomy Journal, 2020, 112, 5325-5333.	1.8	7
8	Soil aggregation as affected by application of diverse organicÂmaterials. , 2020, 3, e20097.		3
9	Foliar Micronutrient Application for High-Yield Maize. Agronomy, 2020, 10, 1946.	3.0	7
10	Barley and wheat nutrient responses for Shewa, Ethiopia. Agronomy Journal, 2020, 112, 1309-1317.	1.8	2
11	Maize and sorghum nutrient response functions for Ethiopia. Nutrient Cycling in Agroecosystems, 2020, 117, 401-410.	2.2	5
12	Lowland rice yield and profit response to fertilizer application in Rwanda. Agronomy Journal, 2020, 112, 1423-1432.	1.8	4
13	Does occasional tillage undo the ecosystem services gained with no-till? A review. Soil and Tillage Research, 2020, 198, 104534.	5.6	92
14	Maize response to applied nutrients for West African savannas. Agronomy Journal, 2020, 112, 2230-2239.	1.8	3
15	Strategic Tillage for the Improvement of No-Till Farming Systems. , 2020, , 155-171.		3
16	Applied organic nitrogen: Pre-plant and in-season estimation of corn nitrogen uptake. Field Crops Research, 2019, 241, 107577.	5.1	4
17	Simulationâ€based Maize–Wheat Cropping System Optimization in the Midhills of Nepal. Agronomy Journal, 2019, 111, 2569-2581.	1.8	3
18	Diagnosis of crop secondary and micro-nutrient deficiencies in sub-Saharan Africa. Nutrient Cycling in Agroecosystems, 2019, 113, 127-140.	2.2	31

#	Article	IF	Citations
19	Fertilizer equivalence of organic nitrogen applied in beef cattle manure. Nutrient Cycling in Agroecosystems, 2019, 114, 225-235.	2.2	1
20	Shortâ€Term Impacts of Conservation Agriculture on Soil Physical Properties and Productivity in the Midhills of Nepal. Agronomy Journal, 2019, 111, 2128-2139.	1.8	10
21	Sesame Sole Crop and Intercrop Response to Fertilizer in Semiâ€Arid Niger. Agronomy Journal, 2019, 111, 2069-2074.	1.8	1
22	Nitrogen Sidedress Directed by Corn Canopy Reflectance for Manured Fields. Agronomy Journal, 2019, 111, 2453-2461.	1.8	3
23	Wheat nutrient response functions for the East Africa highlands. Nutrient Cycling in Agroecosystems, 2018, 111, 21-32.	2.2	16
24	Bean yield and economic response to fertilizer in eastern and southern Africa. Nutrient Cycling in Agroecosystems, 2018, 111, 47-60.	2.2	11
25	Sorghum Grain Yield Under Different Rates of Mineral and Organic Fertilizer Application in the South-Sudan Zone of Burkina Faso. , 2018, , 235-248.		1
26	Soybean response to nitrogen application across the United States: A synthesis-analysis. Field Crops Research, 2018, 215, 74-82.	5.1	83
27	Lowland Rice Nutrient Responses for the Guinea and Sudan Savannas of Nigeria. Agronomy Journal, 2018, 110, 1079-1088.	1.8	11
28	Fertilizer Use Efficiency and Profitability of Irrigated Rice in Mali and Niger. Agronomy Journal, 2018, 110, 1951-1959.	1.8	8
29	Maize-Nutrient Response Functions for Eastern and Southern Africa. Agronomy Journal, 2018, 110, 2070-2079.	1.8	10
30	Fertilizer Application Effects on Grain and Storage Root Nutrient Concentration. Agronomy Journal, 2018, 110, 2619-2625.	1.8	3
31	High Soil Test Phosphorus Effect on Corn Yield. Soil Science Society of America Journal, 2018, 82, 1160-1167.	2.2	4
32	Maize Sole Crop and Intercrop Response to Fertilizer in Mali and Niger. Agronomy Journal, 2018, 110, 728-736.	1.8	15
33	Cassava Yield and Economic Response to Fertilizer in Tanzania, Kenya and Ghana. Agronomy Journal, 2018, 110, 1600-1606.	1.8	16
34	Tetracycline and Sulfonamide Antibiotic Resistance Genes in Soils From Nebraska Organic Farming Operations. Frontiers in Microbiology, 2018, 9, 1283.	3. 5	51
35	Conservation Agriculture Effects on Crop Productivity and Soil Properties in Ethiopia. Agronomy Journal, 2018, 110, 758-767.	1.8	26
36	Crop Yield Response to Fertilizer Relative to Soil Properties in Subâ€Saharan Africa. Soil Science Society of America Journal, 2018, 82, 862-870.	2.2	16

#	Article	IF	Citations
37	Maize Response to Fertilizer on Ferralsol and Luvisol in the South Sudan Zone of Burkina Faso. , 2018, , 195-214.		1
38	Optimization of Financially Constrained Fertilizer Use. Assa, Cssa and Sssa, 2017, , 66-75.	0.6	2
39	Maize-nutrient response information applied across Sub-Saharan Africa. Nutrient Cycling in Agroecosystems, 2017, 107, 175-186.	2.2	22
40	Maize–common bean intercropping to optimize maize-based crop production. Journal of Agricultural Science, 2017, 155, 1124-1136.	1.3	11
41	Crop residue removal and soil erosion by wind. Journal of Soils and Water Conservation, 2017, 72, 97A-104A.	1.6	28
42	Maize-bean intercrop response to nutrient application relative to maize sole crop response. Nutrient Cycling in Agroecosystems, 2017, 109, 17-27.	2.2	15
43	Maize [Zea Mays (L.)] crop-nutrient response functions extrapolation for Sub-Saharan Africa. Nutrient Cycling in Agroecosystems, 2017, 109, 269-289.	2.2	5
44	Maize and pigeon pea sole crop and intercrop nutrient response functions for Tanzania. Nutrient Cycling in Agroecosystems, 2017, 109, 303-314.	2.2	7
45	Finger millet response to nitrogen, phosphorus and potassium in Kenya and Uganda. Nutrient Cycling in Agroecosystems, 2017, 108, 297-308.	2.2	8
46	Groundnut and Soybean Response to Nutrient Application in West Africa. Agronomy Journal, 2017, 109, 2323-2332.	1.8	12
47	Pearl Millet and Sorghum Yield Response to Fertilizer in the Sahel of Burkina Faso. Journal of Agricultural Studies, 2017, 5, 176.	0.1	5
48	Grain sorghum nitrogen use as affected by planting practice and nitrogen rate. Journal of Soil Science and Plant Nutrition, 2017, , 0-0.	3.4	4
49	Pearl Millet and Cowpea Intercrop Response to Applied Nutrients in West Africa. Agronomy Journal, 2017, 109, 2333-2342.	1.8	22
50	Conservation Agriculture for Maize and Bean Production in the Central Rift Valley of Ethiopia. Agronomy Journal, 2017, 109, 2988-2997.	1.8	19
51	Aerial Interseeded Cover Crop and Corn Residue Harvest: Soil and Crop Impacts. Agronomy Journal, 2017, 109, 1344-1351.	1.8	46
52	Sorghum and Groundnut Sole and Intercrop Nutrient Response in Semi-Arid West Africa. Agronomy Journal, 2017, 109, 2907-2917.	1.8	14
53	Spatial analysis for optimization of fertilizer use, 2017,, 20-24.		5
54	Integrated soil fertility management in sub-Saharan Africa , 2017, , 25-39.		9

#	Article	IF	CITATIONS
55	Optimizing maize-based cropping systems: sustainability, good agricultural practices (GAP) and yield goals. Burleigh Dodds Series in Agricultural Science, 2017, , 13-32.	0.2	1
56	Residue Harvest Effects on Irrigated, Noâ€Till Corn Yield and Nitrogen Response. Agronomy Journal, 2016, 108, 384-390.	1.8	14
57	Grain Sorghum Response to Reduced Tillage, Rotation, and Soil Fertility Management in Uganda. Agronomy Journal, 2016, 108, 2137-2146.	1.8	4
58	Dry Soil Planting of Maize for Variable Onset of Rainfall in Ethiopia. Agronomy Journal, 2015, 107, 1618-1625.	1.8	10
59	Time of Day Effect on Foliar Nutrient Concentrations inÂCorn and Soybean. Journal of Plant Nutrition, 2015, 38, 2312-2325.	1.9	7
60	Cultivation Effects on Organic Matter Concentration and Infiltration Rates of Two Creeping Bentgrass (Agrostis stolonifera L.) Putting Greens., 2014, 11, ATS-2014-0032-RS.		0
61	Dry Soil Planting of Sorghum for Vertisols of Ethiopia. Agronomy Journal, 2014, 106, 469-474.	1.8	6
62	Soil organic carbon: The value to soil properties. Journal of Soils and Water Conservation, 2013, 68, 129A-134A.	1.6	97
63	Maximizing Net Returns to Financially Constrained Fertilizer Use. Agronomy Journal, 2013, 105, 573-578.	1.8	34
64	Irrigated Soybean Can Have a Small Response to Nitrogen Applied During Early Reproductive Growth. Crop Management, 2012, 11, 1-4.	0.3	5
65	Sorghum Response to Fertilizer and Nitrogen Use Efficiency in Uganda. Agronomy Journal, 2012, 104, 83-90.	1.8	40
66	Effectiveness of Grass Filters in Reducing Phosphorus and Sediment Runoff. Water, Air, and Soil Pollution, 2012, 223, 5865-5875.	2.4	19
67	Maize Response to Fertilizer and Nitrogen Use Efficiency in Uganda. Agronomy Journal, 2012, 104, 73-82.	1.8	78
68	Optimizing smallholder returns to fertilizer use: Bean, soybean and groundnut. Field Crops Research, 2012, 127, 109-119.	5.1	35
69	Nitrogen Response and Economics for Irrigated Corn in Nebraska. Agronomy Journal, 2011, 103, 67-75.	1.8	35
70	Nitrogen Use Efficiency of Irrigated Corn for Three Cropping Systems in Nebraska. Agronomy Journal, 2011, 103, 76-84.	1.8	65
71	Maize–Bean Intercrop Weed Suppression and Profitability in Southern Ethiopia. Agronomy Journal, 2011, 103, 1058-1063.	1.8	30
72	Soil Physical Properties of Aging Golf Course Putting Greens. Crop Science, 2010, 50, 2084-2091.	1.8	12

#	Article	IF	Citations
73	Skipâ€Row Planting and Tieâ€Ridging for Sorghum Production in Semiarid Areas of Ethiopia. Agronomy Journal, 2010, 102, 745-750.	1.8	6
74	Dryland Performance of Sweet Sorghum and Grain Crops for Biofuel in Nebraska. Agronomy Journal, 2010, 102, 319-326.	1.8	122
75	Skipâ€Row and Plant Population Effects on Sorghum Grain Yield. Agronomy Journal, 2010, 102, 296-302.	1.8	12
76	Oneâ€Time Tillage of Noâ€Till Crop Land Five Years Postâ€Tillage. Agronomy Journal, 2010, 102, 1302-1307.	1.8	52
77	Phosphorus Sorption as Affected by Soil Properties and Termite Activity in Eastern and Southern Africa. Soil Science Society of America Journal, 2009, 73, 2170-2176.	2.2	11
78	High‥ielding Corn Response to Applied Phosphorus, Potassium, and Sulfur in Nebraska. Agronomy Journal, 2009, 101, 546-555.	1.8	53
79	Tied-ridging and fertilizer use for sorghum production in semi-arid Ethiopia. Nutrient Cycling in Agroecosystems, 2009, 85, 87-94.	2.2	21
80	The effects of manure application on soil aggregation. Nutrient Cycling in Agroecosystems, 2008, 80, 173-180.	2.2	89
81	Decomposition of Bt and Non-Bt Corn Hybrid Residues in the Field. Nutrient Cycling in Agroecosystems, 2008, 80, 211-222.	2.2	53
82	Tie-Ridge Tillage for High Altitude Pulse Production in Northern Ethiopia. Agronomy Journal, 2008, 100, 447.	1.8	3
83	Soil Microbial Community Change and Recovery after Oneâ€Time Tillage of Continuous Noâ€Till. Agronomy Journal, 2008, 100, 1681-1686.	1.8	69
84	Tieâ€Ridge Tillage for High Altitude Pulse Production in Northern Ethiopia. Agronomy Journal, 2008, 100, 447-453.	1.8	13
85	Nutrient and Chemical Characterization of Aging Golf Course Putting Greens: Establishment and Rootzone Mixture Treatment Effects. Crop Science, 2007, 47, 193-199.	1.8	9
86	Manure Phosphorus Fractions: Development of Analytical Methods and Variation with Manure Types. Communications in Soil Science and Plant Analysis, 2007, 38, 935-947.	1.4	4
87	Low Input Approaches for Soil Fertility Management in Semiarid Eastern Uganda. Agronomy Journal, 2007, 99, 847-853.	1.8	24
88	Nitrogen Response of Grain Sorghum in Rotation with Soybean. Agronomy Journal, 2007, 99, 808-813.	1.8	19
89	Residual Effects of Compost and Plowing on Phosphorus and Sediment in Runoff. Journal of Environmental Quality, 2007, 36, 1521-1527.	2.0	13
90	Oneâ€Time Tillage of Noâ€Till: Effects on Nutrients, Mycorrhizae, and Phosphorus Uptake. Agronomy Journal, 2007, 99, 1093-1103.	1.8	60

#	Article	IF	CITATIONS
91	Oneâ€Time Tillage of Noâ€Till Systems: Soil Physical Properties, Phosphorus Runoff, and Crop Yield. Agronomy Journal, 2007, 99, 1104-1110.	1.8	62
92	Occasional Tillage of Noâ€Till Systems: Carbon Dioxide Flux and Changes in Total and Labile Soil Organic Carbon. Agronomy Journal, 2007, 99, 1158-1168.	1.8	61
93	Phosphorus Runoff during Four Years following Composted Manure Application. Journal of Environmental Quality, 2006, 35, 651-657.	2.0	37
94	Micro-Basin Tillage for Grain Sorghum Production in Semiarid Areas of Northern Ethiopia. Agronomy Journal, 2006, 98, 124.	1.8	46
95	Noâ€Till Row Crop Response to Starter Fertilizer in Eastern Nebraska II. Rainfed Grain Sorghum. Agronomy Journal, 2006, 98, 187-193.	1.8	10
96	No-Till Row Crop Response to Starter Fertilizer in Eastern Nebraska. Agronomy Journal, 2006, 98, 156.	1.8	27
97	Manure Phosphorus (P) and Surface Water Protection II: Field and Management Factors Contributing to P Loss Risk. Journal of Natural Resources and Life Sciences Education, 2006, 35, 241-242.	0.2	0
98	Manure Phosphorus (P) and Surface Water Protection I: Basic Concepts of Soil and Water P. Journal of Natural Resources and Life Sciences Education, 2006, 35, 240-241.	0.2	0
99	Starter Fertilizer and Row Cleaning Did Not Affect Yield of Earlyâ€Planted, Noâ€√ill Grain Sorghum. Crop Management, 2006, 5, 1-5.	0.3	5
100	Corn Response to Nitrogen Rate, Row Spacing, and Plant Density in Eastern Nebraska. Agronomy Journal, 2006, 98, 529-535.	1.8	109
101	Tillage and Rotation Interactions for Corn and Soybean Grain Yield as Affected by Precipitation and Air Temperature. Agronomy Journal, 2004, 96, 425-432.	1.8	110
102	Tillage and Rotation Interactions for Corn and Soybean Grain Yield as Affected by Precipitation and Air Temperature. Agronomy Journal, 2004, 96, 425.	1.8	52
103	Green Manure/Cover Crop Technology in Eastern and Central Uganda: Development and Dissemination. , 2004, , 219-236.		0
104	Plant Materials for Soil Fertility Management in Subhumid Tropical Areas. Agronomy Journal, 2001, 93, 929-935.	1.8	32
105	Nutrient dynamics in a climbing bean and sorghum crop rotation in the Central Africa Highlands. Nutrient Cycling in Agroecosystems, 2001, 61, 267-272.	2.2	13
106	Integrated nutrient management for resource-poor farming systems: A case study of adaptive research and technology dissemination in Uganda. Renewable Agriculture and Food Systems, 2001, 16, 161-167.	0.5	15
107	Title is missing!. Agroforestry Systems, 1999, 47, 123-138.	2.0	45
108	Development of an integrated bean root rot control strategy for Western Kenya. African Crop Science Journal, 1998, 6, .	0.2	11

#	Article	IF	CITATIONS
109	Efficiency of nitrogen acquisition and utilisation in common bean in Uganda. African Crop Science Journal, 1998, 6, .	0.2	4
110	Fertilizer Use Issues for Smallholder Agriculture in Tropical Africa. , 0, , .		4
111	Nutrient management for sustainable food crop intensification in African tropical savannas. Agronomy Journal, 0, , .	1.8	8