
Pamela Sklar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2258098/publications.pdf Version: 2024-02-01

DAMELA SKLAD

#	Article	IF	CITATIONS
1	Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors. Biological Psychiatry, 2022, 91, 313-327.	0.7	114
2	Rare coding variants in ten genes confer substantial risk for schizophrenia. Nature, 2022, 604, 509-516.	13.7	326
3	Investigating rare pathogenic/likely pathogenic exonic variation in bipolar disorder. Molecular Psychiatry, 2021, 26, 5239-5250.	4.1	15
4	Contributions of common genetic variants to risk of schizophrenia among individuals of African and Latino ancestry. Molecular Psychiatry, 2020, 25, 2455-2467.	4.1	82
5	Characterization of Single Gene Copy Number Variants in Schizophrenia. Biological Psychiatry, 2020, 87, 736-744.	0.7	10
6	Analysis of Genetically Regulated Gene Expression Identifies a Prefrontal PTSD Gene, SNRNP35, Specific to Military Cohorts. Cell Reports, 2020, 31, 107716.	2.9	44
7	A molecular approach to treating cognition in schizophrenia by calcium channel blockade. Schizophrenia Research: Cognition, 2020, 21, 100180.	0.7	4
8	Differential activity of transcribed enhancers in the prefrontal cortex of 537 cases with schizophrenia and controls. Molecular Psychiatry, 2019, 24, 1685-1695.	4.1	40
9	O1.3. DIFFERENTIAL HISTONE MODIFICATIONS IN 250 SCHIZOPHRENIA CASES AND 330 CONTROLS. Schizophrenia Bulletin, 2019, 45, S159-S160.	2.3	Ο
10	Global landscape and genetic regulation of RNA editing in cortical samples from individuals with schizophrenia. Nature Neuroscience, 2019, 22, 1402-1412.	7.1	63
11	Synergistic effects of common schizophrenia risk variants. Nature Genetics, 2019, 51, 1475-1485.	9.4	184
12	GWAS of Suicide Attempt in Psychiatric Disorders and Association With Major Depression Polygenic Risk Scores. American Journal of Psychiatry, 2019, 176, 651-660.	4.0	186
13	Genome-wide association study identifies 30 loci associated with bipolar disorder. Nature Genetics, 2019, 51, 793-803.	9.4	1,191
14	Gene expression imputation across multiple brain regions provides insights into schizophrenia risk. Nature Genetics, 2019, 51, 659-674.	9.4	154
15	Comparative genetic architectures of schizophrenia in East Asian and European populations. Nature Genetics, 2019, 51, 1670-1678.	9.4	440
16	Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nature Genetics, 2019, 51, 63-75.	9.4	1,594
17	Contribution of Rare Copy Number Variants toÂBipolar Disorder Risk Is Limited to Schizoaffective Cases. Biological Psychiatry, 2019, 86, 110-119.	0.7	45
18	Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nature Genetics, 2018, 50, 381-389.	9.4	1,332

PAMELA SKLAR

#	Article	IF	CITATIONS
19	Genetic validation of bipolar disorder identified by automated phenotyping using electronic health records. Translational Psychiatry, 2018, 8, 86.	2.4	24
20	Integrative transcriptome analyses of the aging brain implicate altered splicing in Alzheimer's disease susceptibility. Nature Genetics, 2018, 50, 1584-1592.	9.4	307
21	20.4 MODELING THE CONTRIBUTION OF COMMON VARIANTS TO SCHIZOPHRENIA RISK. Schizophrenia Bulletin, 2018, 44, S34-S34.	2.3	0
22	Expression-based drug screening of neural progenitor cells from individuals with schizophrenia. Nature Communications, 2018, 9, 4412.	5.8	63
23	Landscape of Conditional eQTL in Dorsolateral Prefrontal Cortex and Co-localization with Schizophrenia GWAS. American Journal of Human Genetics, 2018, 102, 1169-1184.	2.6	128
24	Evaluation of chromatin accessibility in prefrontal cortex of individuals with schizophrenia. Nature Communications, 2018, 9, 3121.	5.8	141
25	Cell-specific histone modification maps in the human frontal lobe link schizophrenia risk to the neuronal epigenome. Nature Neuroscience, 2018, 21, 1126-1136.	7.1	112
26	Analysis of shared heritability in common disorders of the brain. Science, 2018, 360, .	6.0	1,085
27	Examining the role of common and rare mitochondrial variants in schizophrenia. PLoS ONE, 2018, 13, e0191153.	1.1	23
28	Practical Guidelines for High-Resolution Epigenomic Profiling of Nucleosomal Histones in Postmortem Human Brain Tissue. Biological Psychiatry, 2017, 81, 162-170.	0.7	48
29	Large-Scale Identification of Common Trait and Disease Variants Affecting Gene Expression. American Journal of Human Genetics, 2017, 100, 885-894.	2.6	91
30	Institutional profile: translational pharmacogenomics at the Icahn School of Medicine at Mount Sinai. Pharmacogenomics, 2017, 18, 1381-1386.	0.6	20
31	Mutation intolerant genes and targets of FMRP are enriched for nonsynonymous alleles in schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2017, 174, 724-731.	1.1	19
32	The contribution of rare variants to risk of schizophrenia in individuals with and without intellectual disability. Nature Genetics, 2017, 49, 1167-1173.	9.4	200
33	10 Years of GWAS Discovery: Biology, Function, and Translation. American Journal of Human Genetics, 2017, 101, 5-22.	2.6	2,793
34	Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nature Genetics, 2017, 49, 27-35.	9.4	838
35	Transcriptional signatures of schizophrenia in hiPSC-derived NPCs and neurons are concordant with post-mortem adult brains. Nature Communications, 2017, 8, 2225.	5.8	143
36	Integrated Bayesian analysis of rare exonic variants to identify risk genes for schizophrenia and neurodevelopmental disorders. Genome Medicine, 2017, 9, 114.	3.6	86

PAMELA SKLAR

#	Article	IF	CITATIONS
37	Analysis of 589,306 genomes identifies individuals resilient to severe Mendelian childhood diseases. Nature Biotechnology, 2016, 34, 531-538.	9.4	273
38	Exome Sequencing of Familial Bipolar Disorder. JAMA Psychiatry, 2016, 73, 590.	6.0	97
39	Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nature Neuroscience, 2016, 19, 1442-1453.	7.1	952
40	Increased burden of ultra-rare protein-altering variants among 4,877 individuals with schizophrenia. Nature Neuroscience, 2016, 19, 1433-1441.	7.1	427
41	Ultra-rare disruptive and damaging mutations influence educational attainment in the general population. Nature Neuroscience, 2016, 19, 1563-1565.	7.1	90
42	Nicotine dependence and psychosis in Bipolar disorder and Schizoaffective disorder, Bipolar type. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2016, 171, 521-524.	1.1	7
43	Analysis of protein-coding genetic variation in 60,706 humans. Nature, 2016, 536, 285-291.	13.7	9,051
44	Constance E. Lieber, Theodore R. Stanley, and the Enduring Impact of Philanthropy on Psychiatry Research. Biological Psychiatry, 2016, 80, 84-86.	0.7	2
45	Translating genome-wide association findings into new therapeutics for psychiatry. Nature Neuroscience, 2016, 19, 1392-1396.	7.1	115
46	Dysregulation of miRNA-9 in a Subset of Schizophrenia Patient-Derived Neural Progenitor Cells. Cell Reports, 2016, 15, 1024-1036.	2.9	107
47	Quantifying prion disease penetrance using large population control cohorts. Science Translational Medicine, 2016, 8, 322ra9.	5.8	289
48	Rare loss-of-function variants in SETD1A are associated with schizophrenia and developmental disorders. Nature Neuroscience, 2016, 19, 571-577.	7.1	388
49	Prevalence of Huntington's disease gene CAG trinucleotide repeat alleles in patients with bipolar disorder. Bipolar Disorders, 2015, 17, 403-408.	1.1	6
50	Genetic analysis of schizophrenia and bipolar disorder reveals polygenicity but also suggests new directions for molecular interrogation. Current Opinion in Neurobiology, 2015, 30, 131-138.	2.0	61
51	No evidence for rare recessive and compound heterozygous disruptive variants in schizophrenia. European Journal of Human Genetics, 2015, 23, 555-557.	1.4	21
52	The PsychENCODE project. Nature Neuroscience, 2015, 18, 1707-1712.	7.1	371
53	A Role for Noncoding Variation in Schizophrenia. Cell Reports, 2014, 9, 1417-1429.	2.9	225
54	Specific Glial Functions Contribute to Schizophrenia Susceptibility. Schizophrenia Bulletin, 2014, 40, 925-935.	2.3	105

PAMELA SKLAR

#	Article	IF	CITATIONS
55	Conserved Higher-Order Chromatin Regulates NMDA Receptor Gene Expression and Cognition. Neuron, 2014, 84, 997-1008.	3.8	76
56	De novo CNVs in bipolar affective disorder and schizophrenia. Human Molecular Genetics, 2014, 23, 6677-6683.	1.4	70
57	Reciprocal Duplication of the Williams-Beuren Syndrome Deletion on Chromosome 7q11.23 Is Associated with Schizophrenia. Biological Psychiatry, 2014, 75, 371-377.	0.7	66
58	De novo mutations in schizophrenia implicate synaptic networks. Nature, 2014, 506, 179-184.	13.7	1,510
59	A polygenic burden of rare disruptive mutations in schizophrenia. Nature, 2014, 506, 185-190.	13.7	1,305
60	Synaptic, transcriptional and chromatin genes disrupted in autism. Nature, 2014, 515, 209-215.	13.7	2,254
61	Polygenic dissection of diagnosis and clinical dimensions of bipolar disorder and schizophrenia. Molecular Psychiatry, 2014, 19, 1017-1024.	4.1	333
62	Most genetic risk for autism resides with common variation. Nature Genetics, 2014, 46, 881-885.	9.4	977
63	Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nature Genetics, 2013, 45, 1150-1159.	9.4	1,395
64	Genetics of bipolar disorder. Lancet, The, 2013, 381, 1654-1662.	6.3	499
65	zCall: a rare variant caller for array-based genotyping. Bioinformatics, 2012, 28, 2543-2545.	1.8	195
66	Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature, 2009, 460, 748-752.	13.7	4,345
67	Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nature Genetics, 2008, 40, 1056-1058.	9.4	1,102
68	Analysis of Genetically Regulated Gene Expression Identifies a Trauma Type Specific PTSD Gene, SNRNP35. SSRN Electronic Journal, 0, , .	0.4	0