
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2257795/publications.pdf Version: 2024-02-01

LUNUE CE

#	Article	IF	CITATIONS
1	Chemically activating MoS2 via spontaneous atomic palladium interfacial doping towards efficient hydrogen evolution. Nature Communications, 2018, 9, 2120.	5.8	461
2	Surface Oxidized Cobalt-Phosphide Nanorods As an Advanced Oxygen Evolution Catalyst in Alkaline Solution. ACS Catalysis, 2015, 5, 6874-6878.	5.5	441
3	Climbing the Apex of the ORR Volcano Plot via Binuclear Site Construction: Electronic and Geometric Engineering. Journal of the American Chemical Society, 2019, 141, 17763-17770.	6.6	436
4	Microporous Framework Induced Synthesis of Single-Atom Dispersed Fe-N-C Acidic ORR Catalyst and Its in Situ Reduced Fe-N ₄ Active Site Identification Revealed by X-ray Absorption Spectroscopy. ACS Catalysis, 2018, 8, 2824-2832.	5.5	433
5	Identification of binuclear Co2N5 active sites for oxygen reduction reaction with more than one magnitude higher activity than single atom CoN4 site. Nano Energy, 2018, 46, 396-403.	8.2	319
6	Singleâ€Atom Crâ^'N ₄ Sites Designed for Durable Oxygen Reduction Catalysis in Acid Media. Angewandte Chemie - International Edition, 2019, 58, 12469-12475.	7.2	307
7	Engineering Energy Level of Metal Center: Ru Single-Atom Site for Efficient and Durable Oxygen Reduction Catalysis. Journal of the American Chemical Society, 2019, 141, 19800-19806.	6.6	288
8	Preferentially Engineering FeN ₄ Edge Sites onto Graphitic Nanosheets for Highly Active and Durable Oxygen Electrocatalysis in Rechargeable Zn–Air Batteries. Advanced Materials, 2020, 32, e2004900.	11.1	235
9	Enhanced electrocatalytic performance for the hydrogen evolution reaction through surface enrichment of platinum nanoclusters alloying with ruthenium <i>in situ</i> embedded in carbon. Energy and Environmental Science, 2018, 11, 1232-1239.	15.6	230
10	Fundamental understanding of the acidic oxygen evolution reaction: mechanism study and state-of-the-art catalysts. Nanoscale, 2020, 12, 13249-13275.	2.8	183
11	Bridge Bonded Oxygen Ligands between Approximated FeN ₄ Sites Confer Catalysts with High ORR Performance. Angewandte Chemie - International Edition, 2020, 59, 13923-13928.	7.2	176
12	Pyrolyzed M–N _x catalysts for oxygen reduction reaction: progress and prospects. Energy and Environmental Science, 2021, 14, 2158-2185.	15.6	170
13	Discontinuously covered IrO ₂ –RuO ₂ @Ru electrocatalysts for the oxygen evolution reaction: how high activity and long-term durability can be simultaneously realized in the synergistic and hybrid nano-structure. Journal of Materials Chemistry A, 2017, 5, 17221-17229.	5.2	133
14	Controllable Synthesis of Pd Nanocatalysts for Direct Formic Acid Fuel Cell (DFAFC) Application: From Pd Hollow Nanospheres to Pd Nanoparticles. Journal of Physical Chemistry C, 2007, 111, 17305-17310.	1.5	118
15	Highly Active Carbonâ€supported PdSn Catalysts for Formic Acid Electrooxidation. Fuel Cells, 2009, 9, 114-120.	1.5	111
16	Ultrathin cobalt phosphide nanosheets as efficient bifunctional catalysts for a water electrolysis cell and the origin for cell performance degradation. Green Chemistry, 2016, 18, 2287-2295.	4.6	108
17	Reactant friendly hydrogen evolution interface based on di-anionic MoS2 surface. Nature Communications, 2020, 11, 1116.	5.8	108
18	Correlating Fe source with Fe-N-C active site construction: Guidance for rational design of high-performance ORR catalyst. Journal of Energy Chemistry, 2018, 27, 1668-1673.	7.1	104

#	Article	IF	CITATIONS
19	Boosted Performance of Ir Species by Employing TiN as the Support toward Oxygen Evolution Reaction. ACS Applied Materials & amp; Interfaces, 2018, 10, 38117-38124.	4.0	100
20	Enhancement of the electrooxidation of ethanol on Pt–Sn–P/C catalysts prepared by chemical deposition process. Journal of Power Sources, 2007, 172, 560-569.	4.0	90
21	Highly polarized carbon nano-architecture as robust metal-free catalyst for oxygen reduction in polymer electrolyte membrane fuel cells. Nano Energy, 2018, 49, 23-30.	8.2	90
22	COâ€Tolerant PEMFC Anodes Enabled by Synergistic Catalysis between Iridium Singleâ€Atom Sites and Nanoparticles. Angewandte Chemie - International Edition, 2021, 60, 26177-26183.	7.2	81
23	Selectively doping pyridinic and pyrrolic nitrogen into a 3D porous carbon matrix through template-induced edge engineering: enhanced catalytic activity towards the oxygen reduction reaction. Journal of Materials Chemistry A, 2017, 5, 21709-21714.	5.2	76
24	Novel chemical synthesis of Pt–Ru–P electrocatalysts by hypophosphite deposition for enhanced methanol oxidation and CO tolerance in direct methanol fuel cell. Electrochemistry Communications, 2006, 8, 1280-1286.	2.3	70
25	Nanoporous IrO ₂ catalyst with enhanced activity and durability for water oxidation owing to its micro/mesoporous structure. Nanoscale, 2017, 9, 9291-9298.	2.8	66
26	Strongly coupled Pt nanotubes/N-doped graphene as highly active and durable electrocatalysts for oxygen reduction reaction. Nano Energy, 2015, 13, 318-326.	8.2	62
27	Recent developments of iridium-based catalysts for the oxygen evolution reaction in acidic water electrolysis. Journal of Materials Chemistry A, 2022, 10, 13170-13189.	5.2	47
28	Monocrystalline Ni ₁₂ P ₅ hollow spheres with ultrahigh specific surface areas as advanced electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 9755-9759.	5.2	45
29	Platinum nanoparticles partially-embedded into carbon sphere surfaces: a low metal-loading anode catalyst with superior performance for direct methanol fuel cells. Journal of Materials Chemistry A, 2017, 5, 19857-19865.	5.2	45
30	WO3/C hybrid material as a highly active catalyst support for formic acid electrooxidation. Electrochemistry Communications, 2008, 10, 1113-1116.	2.3	44
31	Cobalt phosphosulfide in the tetragonal phase: a highly active and durable catalyst for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 12353-12360.	5.2	43
32	Accelerated oxygen reduction on Fe/N/C catalysts derived from precisely-designed ZIF precursors. Nano Research, 2020, 13, 2420-2426.	5.8	41
33	Bridge Bonded Oxygen Ligands between Approximated FeN ₄ Sites Confer Catalysts with High ORR Performance. Angewandte Chemie, 2020, 132, 14027-14032.	1.6	40
34	Stabilized Pt Cluster-Based Catalysts Used as Low-Loading Cathode in Proton-Exchange Membrane Fuel Cells. ACS Energy Letters, 2020, 5, 3021-3028.	8.8	39
35	Nanocluster PtNiP supported on graphene as an efficient electrocatalyst for methanol oxidation reaction. Nano Research, 2021, 14, 2853-2860.	5.8	39
36	Recent advances in active sites identification and regulation of M-N/C electro-catalysts towards ORR. Science China Chemistry, 2019, 62, 669-683.	4.2	38

#	Article	IF	CITATIONS
37	Regulating the pore structure and oxygen vacancies of cobaltosic oxide hollow dodecahedra for an enhanced oxygen evolution reaction. NPG Asia Materials, 2020, 12, .	3.8	38
38	Protonated Iridate Nanosheets with a Highly Active and Stable Layered Perovskite Framework for Acidic Oxygen Evolution. ACS Catalysis, 2022, 12, 8658-8666.	5.5	34
39	Proton exchange membrane fuel cells powered with both CO and H ₂ . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	33
40	Singleâ€Atom Crâ^'N ₄ Sites Designed for Durable Oxygen Reduction Catalysis in Acid Media. Angewandte Chemie, 2019, 131, 12599-12605.	1.6	29
41	Manipulation of New Married Edgeâ€Adjacent Fe ₂ N ₅ Catalysts and Identification of Active Species for Oxygen Reduction in Wide pH Range. Advanced Functional Materials, 2022, 32, .	7.8	29
42	TePbPt alloy nanotube as electrocatalyst with enhanced performance towards methanol oxidation reaction. Journal of Materials Chemistry A, 2018, 6, 16798-16803.	5.2	25
43	Evidence for interfacial geometric interactions at metal–support interfaces and their influence on the electroactivity and stability of Pt nanoparticles. Journal of Materials Chemistry A, 2020, 8, 1368-1377.	5.2	25
44	An ultralow-loading platinum alloy efficient ORR electrocatalyst based on the surface-contracted hollow structure. Chemical Engineering Journal, 2022, 428, 131569.	6.6	22
45	Carbon monoxide powered fuel cell towards H2-onboard purification. Science Bulletin, 2021, 66, 1305-1311.	4.3	21
46	Modulating Crystallinity and Surface Electronic Structure of IrO ₂ via Gadolinium Doping to Promote Acidic Oxygen Evolution. ACS Sustainable Chemistry and Engineering, 2021, 9, 10710-10716.	3.2	20
47	Tuning the oxidation state of Ru to surpass Pt in hydrogen evolution reaction. Nano Research, 2021, 14, 4321-4327.	5.8	19
48	Highly dispersed L10-PtZn intermetallic catalyst for efficient oxygen reduction. Science China Materials, 2021, 64, 1671-1678.	3.5	18
49	Simultaneously Engineering Electron Conductivity, Site Density and Intrinsic Activity of MoS ₂ via the Cation and Anion Codoping Strategy. ACS Applied Materials & Interfaces, 2019, 11, 39782-39788.	4.0	16
50	Investigations of Pt modified Pd/C catalyst synthesized by one-pot galvanic replacement for formic acid electrooxidation. International Journal of Hydrogen Energy, 2014, 39, 2489-2496.	3.8	13
51	Construction and Regulation of a Surface Protophilic Environment to Enhance Oxygen Reduction Reaction Electrocatalytic Activity. ACS Applied Materials & Interfaces, 2020, 12, 41269-41276.	4.0	13
52	Structural Advantage Induced by Sulfur to Boost the Catalytic Performance of FeNC Catalyst towards the Oxygen Reduction Reaction. ChemCatChem, 2018, 10, 3653-3658.	1.8	13
53	Proton conductivity enhancement by nanostructural control of sulphonated poly (ether ether) Tj ETQq1 1 0.78	4314 rgBT 3.8	/Overlock 10
54	Formic acid electro-oxidation: Mechanism and electrocatalysts design. Nano Research, 2023, 16, 3607-3621	5.8	12

3607-3621.

#	Article	IF	CITATIONS
55	Micro Galvanic Cell To Generate PtO and Extend the Triple-Phase Boundary during Self-Assembly of Pt/C and Nafion for Catalyst Layers of PEMFC. ACS Applied Materials & Interfaces, 2017, 9, 38165-38169.	4.0	11
56	Micro-Membrane Electrode Assembly Design to Precisely Measure the in Situ Activity of Oxygen Reduction Reaction Electrocatalysts for PEMFC. Analytical Chemistry, 2017, 89, 6309-6313.	3.2	9
57	COâ€Tolerant PEMFC Anodes Enabled by Synergistic Catalysis between Iridium Singleâ€Atom Sites and Nanoparticles. Angewandte Chemie, 2021, 133, 26381.	1.6	9
58	Enhancing mass transport in direct methanol fuel cell by optimizing the microstructure of anode microporous layer. AICHE Journal, 2018, 64, 3519-3528.	1.8	8
59	Recent advances in active sites identification and new Mâ^'Nâ^'C catalysts development towards ORR. JPhys Materials, 2021, 4, 044008.	1.8	7
60	Effect of sulfonation degree on performance of proton exchange membranes for direct methanol fuel cells. Chemical Research in Chinese Universities, 2016, 32, 291-295.	1.3	5
61	Activating MoS2 via electronic structure modulation and phase engineering for hydrogen evolution reaction. Catalysis Communications, 2022, 164, 106427.	1.6	3
62	Preparation Strategy Using Pre-Nucleation Coupled with In Situ Reduction for a High-Performance Catalyst towards Selective Hydrogen Production from Formic Acid. Catalysts, 2022, 12, 325.	1.6	3
63	RuCo Alloy Nanoparticles Embedded into N-Doped Carbon for High Efficiency Hydrogen Evolution Electrocatalyst. Energies, 2022, 15, 2908.	1.6	3
64	Nickel Phosphide Coated with Ultrathin Nitrogen Doped Carbon Shell as a Highly Durable and Active Catalyst towards Hydrogen Evolution Reaction. Chemistry - an Asian Journal, 2022, , .	1.7	1