Xiaochun Long

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2257361/publications.pdf

Version: 2024-02-01

41 papers 2,807 citations

25 h-index

236925

289244 40 g-index

44 all docs 44 docs citations

44 times ranked 4260 citing authors

#	Article	IF	CITATIONS
1	Serum response factor: master regulator of the actin cytoskeleton and contractile apparatus. American Journal of Physiology - Cell Physiology, 2007, 292, C70-C81.	4.6	411
2	Cholesterol Loading Reprograms the MicroRNA-143/145–Myocardin Axis to Convert Aortic Smooth Muscle Cells to a Dysfunctional Macrophage-Like Phenotype. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 535-546.	2.4	261
3	Defining the mammalian CArGome. Genome Research, 2006, 16, 197-207.	5.5	255
4	Identification and Initial Functional Characterization of a Human Vascular Cell–Enriched Long Noncoding RNA. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1249-1259.	2.4	247
5	SRF and myocardin regulate LRP-mediated amyloid- \hat{l}^2 clearance in brain vascular cells. Nature Cell Biology, 2009, 11, 143-153.	10.3	237
6	Transforming Growth Factor- \hat{l}^21 (TGF- \hat{l}^21) Utilizes Distinct Pathways for the Transcriptional Activation of MicroRNA 143/145 in Human Coronary Artery Smooth Muscle Cells. Journal of Biological Chemistry, 2011, 286, 30119-30129.	3.4	126
7	Myocardin Is Sufficient for a Smooth Muscle-Like Contractile Phenotype. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1505-1510.	2.4	112
8	<i>MYOSLID</i> Is a Novel Serum Response Factor–Dependent Long Noncoding RNA That Amplifies the Vascular Smooth Muscle Differentiation Program. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 2088-2099.	2.4	93
9	Myocardin Regulates Vascular Smooth Muscle Cell Inflammatory Activation and Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 817-828.	2.4	92
10	<i>SENCR</i> stabilizes vascular endothelial cell adherens junctions through interaction with CKAP4. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 546-555.	7.1	88
11	Myocardin is a bifunctional switch for smooth versus skeletal muscle differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16570-16575.	7.1	84
12	Prime editing in mice reveals the essentiality of a single base in driving tissue-specific gene expression. Genome Biology, 2021, 22, 83.	8.8	62
13	The Smooth Muscle Cell-restricted KCNMB1 Ion Channel Subunit Is a Direct Transcriptional Target of Serum Response Factor and Myocardin. Journal of Biological Chemistry, 2009, 284, 33671-33682.	3.4	55
14	Platelet factor 4 mediates vascular smooth muscle cell injury responses. Blood, 2013, 121, 4417-4427.	1.4	53
15	Vascular smooth muscle-MAPK14 is required for neointimal hyperplasia by suppressing VSMC differentiation and inducing proliferation and inflammation. Redox Biology, 2019, 22, 101137.	9.0	46
16	Identifying functional single nucleotide polymorphisms in the human CArGome. Physiological Genomics, 2011, 43, 1038-1048.	2.3	44
17	Smad3-mediated Myocardin Silencing. Journal of Biological Chemistry, 2011, 286, 15050-15057.	3.4	43
18	The short and long of noncoding sequences in the control of vascular cell phenotypes. Cellular and Molecular Life Sciences, 2015, 72, 3457-3488.	5.4	34

#	Article	IF	CITATIONS
19	Dual Function for Mature Vascular Smooth Muscle Cells During Arteriovenous Fistula Remodeling. Journal of the American Heart Association, 2017, 6, .	3.7	34
20	Myocardin-dependent Activation of the CArG Box-rich Smooth Muscle \hat{I}^3 -Actin Gene. Journal of Biological Chemistry, 2009, 284, 32582-32590.	3.4	33
21	Expression and functional activity of four myocardin isoforms. Gene, 2010, 464, 1-10.	2.2	33
22	Contribution of serum response factor and myocardin to transcriptional regulation of smoothelins. Cardiovascular Research, 2006, 70, 136-145.	3.8	32
23	Remote Control of Gene Expression. Journal of Biological Chemistry, 2007, 282, 15941-15945.	3.4	29
24	MKL1 cooperates with p38MAPK to promote vascular senescence, inflammation, and abdominal aortic aneurysm. Redox Biology, 2021, 41, 101903.	9.0	29
25	Smooth Muscle Calponin. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2172-2180.	2.4	28
26	Selective expression of TSPAN2 in vascular smooth muscle is independently regulated by TGFâ€Î²1/SMAD and myocardin/serum response factor. FASEB Journal, 2017, 31, 2576-2591.	0.5	27
27	Expression and promoter analysis of a highly restricted integrin alpha gene in vascular smooth muscle. Gene, 2013, 513, 82-89.	2.2	26
28	Myocardin and microRNAâ€1 modulate bladder activity through connexin 43 expression during postâ€natal development. Journal of Cellular Physiology, 2013, 228, 1819-1826.	4.1	24
29	The Hemoglobin Homolog Cytoglobin in Smooth Muscle Inhibits Apoptosis and Regulates Vascular Remodeling. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1944-1955.	2.4	24
30	CRISPR-Cas9–Mediated Epitope Tagging Provides Accurate and Versatile Assessment of Myocardin—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2184-2190.	2.4	24
31	Mitogen-Activated Protein Kinase 14 Is a Novel Negative Regulatory Switch for the Vascular Smooth Muscle Cell Contractile Gene Program. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 378-386.	2.4	22
32	Fibronectin Matrix Polymerization Regulates Smooth Muscle Cell Phenotype through a Rac1 Dependent Mechanism. PLoS ONE, 2014, 9, e94988.	2.5	22
33	Transcriptional control of a novel long noncoding RNA Mymsl in smooth muscle cells by a single Cis-element and its initial functional characterization in vessels. Journal of Molecular and Cellular Cardiology, 2020, 138, 147-157.	1.9	14
34	Transforming growth factor \hat{l}^21 suppresses proinflammatory gene program independent of its regulation on vascular smooth muscle differentiation and autophagy. Cellular Signalling, 2018, 50, 160-170.	3.6	13
35	Retinoid-Induced Expression and Activity of an Immediate Early Tumor Suppressor Gene in Vascular Smooth Muscle Cells. PLoS ONE, 2011, 6, e18538.	2.5	10
36	CRISPR links to long noncoding RNA function in mice: A practical approach. Vascular Pharmacology, 2019, 114, 1-12.	2.1	9

XIAOCHUN LONG

#	Article	IF	CITATIONS
37	Transcriptome analysis of mouse aortae reveals multiple novel pathways regulated by aging. Aging, 2020, 12, 15603-15623.	3.1	9
38	Expression and comparative genomics of two serum response factor genes in zebrafish. International Journal of Developmental Biology, 2008, 52, 389-396.	0.6	7
39	Myocardin. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 2284-2285.	2.4	4
40	Thymine DNA glycosylase is a key regulator of CaMKIIÎ 3 expression and vascular smooth muscle phenotype. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H969-H980.	3.2	4
41	CRISPR-tagging mice in aging research. Aging, 2018, 10, 2226-2227.	3.1	0