
Takashi Umemura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2257299/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SHORT COMMUNICATION: Formation of 8-hydroxydeoxyguanosine (8-OH-dG) in rat kidney DNA after intraperitoneal administration of ferric nitrilotriacetate (Fe—NTA). Carcinogenesis, 1990, 11, 345-347.	1.3	166
2	The Protective Role of Glutathione, Cysteine and Vitamin C against Oxidative DNA Damage Induced in Rat Kidney by Potassium Bromate. Japanese Journal of Cancer Research, 1992, 83, 45-51.	1.7	92
3	Relation of 8-Hydroxydeoxyguanosine Formation in Rat Kidney to Lipid Peroxidation, Glutathione Level and Relative Organ Weight after a Single Administration of Potassium Bromate. Japanese Journal of Cancer Research, 1991, 82, 165-169.	1.7	79
4	Possible involvement of oxidative stress in piperonyl butoxide induced hepatocarcinogenesis in rats. Toxicology, 2007, 236, 61-75.	2.0	74
5	Site-Specific In Vivo Mutagenicity in the Kidney of gpt Delta Rats Given a Carcinogenic Dose of Ochratoxin A. Toxicological Sciences, 2011, 122, 406-414.	1.4	73
6	A Crucial Role of Nrf2 in In Vivo Defense against Oxidative Damage by an Environmental Pollutant, Pentachlorophenol. Toxicological Sciences, 2006, 90, 111-119.	1.4	72
7	Increased susceptibility to hepatocarcinogenicity of Nrf2-deficient mice exposed to 2-amino-3-methylimidazo[4,5-f]quinoline. Cancer Science, 2007, 98, 19-24.	1.7	69
8	Prevention of dual promoting effects of pentachlorophenol, an environmental pollutant, on diethylnitrosamine-induced hepato- and cholangiocarcinogenesis in mice by green tea infusion. Carcinogenesis, 2003, 24, 1105-1109.	1.3	59
9	Oxidative DNA damage and cell proliferation in kidneys of male and female rats during 13-weeks exposure to potassium bromate (KBrO 3). Archives of Toxicology, 1998, 72, 264-269.	1.9	58
10	Cell proliferation induced in the kidneys and livers of rats and mice by short term exposure to the carcinogen p-dichlorobenzene. Archives of Toxicology, 1992, 66, 503-507.	1.9	54
11	A possible role for oxidative stress in potassium bromate (KBrO3) carcinogenesis. Carcinogenesis, 1995, 16, 593-597.	1.3	53
12	In vivo mutational analysis of liver DNA ingpt delta transgenic rats treated with the hepatocarcinogensN-nitrosopyrrolidine, 2-amino-3-methylimidazo[4,5-f]quinoline, and di(2-ethylhexyl)phthalate. Molecular Carcinogenesis, 2005, 42, 9-17.	1.3	50
13	Dose-related changes of oxidative stress and cell proliferation in kidneys of male and female F344 rats exposed to potassium bromate. Cancer Science, 2004, 95, 393-398.	1.7	49
14	β-Naphthoflavone enhances oxidative stress responses and the induction of preneoplastic lesions in a diethylnitrosamine-initiated hepatocarcinogenesis model in partially hepatectomized rats. Toxicology, 2008, 244, 179-189.	2.0	49
15	Prevention by 2-Mercaptoethane Sulfonate andN-Acetylcysteine of Renal Oxidative Damage in Rats Treated with Ferric Nitrilotriacetate. Japanese Journal of Cancer Research, 1996, 87, 882-886.	1.7	47
16	In vivo mutagenicity and initiation following oxidative DNA lesion in the kidneys of rats given potassium bromate. Cancer Science, 2006, 97, 829-835.	1.7	47
17	Ochratoxin A induces DNA double-strand breaks and large deletion mutations in the carcinogenic target site of gpt delta rats. Mutagenesis, 2014, 29, 27-36.	1.0	38
18	Molecular mechanisms underlying ochratoxin A-induced genotoxicity: global gene expression analysis suggests induction of DNA double-strand breaks and cell cycle progression. Journal of Toxicological Sciences, 2013, 38, 57-69.	0.7	37

Takashi Umemura

#	Article	IF	CITATIONS
19	Possible participation of oxidative stress in causation of cell proliferation and in vivo mutagenicity in kidneys of gpt delta rats treated with potassium bromate. Toxicology, 2009, 257, 46-52.	2.0	36
20	Low dose genotoxicity of 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MelQx) in gpt delta transgenic mice. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2003, 541, 91-102.	0.9	34
21	Absence of in vivo genotoxicity of 3-monochloropropane-1,2-diol and associated fatty acid esters in a 4-week comprehensive toxicity study using F344 gpt delta rats. Mutagenesis, 2014, 29, 295-302.	1.0	33
22	Etiology of bromate-induced cancer and possible modes of action-studies in Japan. Toxicology, 2006, 221, 154-157.	2.0	32
23	Involvement of oxidative stress in hepatocellular tumor-promoting activity of oxfendazole in rats. Archives of Toxicology, 2009, 83, 503-511.	1.9	32
24	Detection and Quantification of Specific DNA Adducts by Liquid Chromatographyâ^'Tandem Mass Spectrometry in the Livers of Rats Given Estragole at the Carcinogenic Dose. Chemical Research in Toxicology, 2011, 24, 532-541.	1.7	32
25	Integration of In Vivo Genotoxicity and Short-term Carcinogenicity Assays Using F344 gpt Delta Transgenic Rats: In Vivo Mutagenicity of 2,4-Diaminotoluene and 2,6-Diaminotoluene Structural Isomers. Toxicological Sciences, 2010, 114, 71-78.	1.4	31
26	Cell cycle progression, but not genotoxic activity, mainly contributes to citrinin-induced renal carcinogenesis. Toxicology, 2013, 311, 216-224.	2.0	30
27	Possible involvement of genotoxic mechanisms in estragole-induced hepatocarcinogenesis in rats. Archives of Toxicology, 2012, 86, 1593-1601.	1.9	29
28	Role of p53 in the Progression from Ochratoxin A-Induced DNA Damage to Gene Mutations in the Kidneys of Mice. Toxicological Sciences, 2015, 144, 65-76.	1.4	29
29	Effects of p53 knockout on ochratoxin A-induced genotoxicity in p53-deficient gpt delta mice. Toxicology, 2013, 304, 92-99.	2.0	28
30	Effects of <i>Nrf2</i> silencing on oxidative stressâ€associated intestinal carcinogenesis in mice. Cancer Medicine, 2016, 5, 1228-1238.	1.3	28
31	Detection of oxidative DNA damage, cell proliferation and in vivo mutagenicity induced by dicyclanil, a non-genotoxic carcinogen, using gpt delta mice. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2007, 633, 46-54.	0.9	26
32	A Possible Role of Nrf2 in Prevention of Renal Oxidative Damage by Ferric Nitrilotriacetate. Toxicologic Pathology, 2008, 36, 353-361.	0.9	26
33	Chemical Structure Determination of DNA Bases Modified by Active Metabolites of Lucidin-3- <i>O</i> -primeveroside. Chemical Research in Toxicology, 2010, 23, 134-141.	1.7	25
34	Acrylamide induces specific DNA adduct formation and gene mutations in a carcinogenic target site, the mouse lung. Mutagenesis, 2015, 30, 227-235.	1.0	25
35	Induction of characteristic hepatocyte proliferative lesion with dietary exposure of Wistar Hannover rats to tocotrienol for 1 year. Toxicology, 2008, 250, 143-150.	2.0	24
36	Possible involvement of sulfotransferase 1A1 in estragole-induced DNA modification and carcinogenesis in the livers of female mice. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2012, 749, 23-28.	0.9	24

Takashi Umemura

#	Article	IF	CITATIONS
37	Elevation of cell proliferation via generation of reactive oxygen species by piperonyl butoxide contributes to its liver tumor-promoting effects in mice. Archives of Toxicology, 2010, 84, 155-164.	1.9	23
38	A possible role for cell proliferation in potassium bromate (KBrO3) carcinogenesis. Journal of Cancer Research and Clinical Oncology, 1993, 119, 463-469.	1.2	21
39	Induction of Colon Tumors in C57BL/6J Mice Fed MeIQx, IQ, or PhIP Followed by Dextran Sulfate Sodium Treatment. Toxicological Sciences, 2005, 84, 243-248.	1.4	20
40	Possible involvement of oxidative stress in dicyclanil-induced hepatocarcinogenesis in mice. Archives of Toxicology, 2006, 80, 694-702.	1.9	20
41	Susceptibility to urethane carcinogenesis of transgenic mice carrying a human prototype c-Ha-ras gene (rasH2 mice) and its modification by butylhydroxytoluene. Cancer Letters, 1999, 145, 101-106.	3.2	19
42	Oxidative DNA damage and <i>in vivo</i> mutagenicity caused by reactive oxygen species generated in the livers of <i>p53</i> â€proficient or â€deficient <i>gpt</i> delta mice treated with nonâ€genotoxic hepatocarcinogens. Journal of Applied Toxicology, 2013, 33, 1433-1441.	1.4	18
43	Nine-week detection of six genotoxic lung carcinogens using the rasH2/BHT mouse model. Cancer Letters, 2006, 231, 314-318.	3.2	17
44	Lack of genotoxic mechanisms in earlyâ€stage furanâ€induced hepatocellular tumorigenesis in <i>gpt</i> delta rats. Journal of Applied Toxicology, 2017, 37, 142-149.	1.4	17
45	Oxidative DNA damage and reporter gene mutation in the livers of <i>gpt</i> delta rats given nonâ€genotoxic hepatocarcinogens with cytochrome P450â€inducible potency. Cancer Science, 2010, 101, 2525-2530.	1.7	16
46	Combined application of comprehensive analysis for DNA modification and reporter gene mutation assay to evaluate kidneys of gpt delta rats given madder color or its constituents. Analytical and Bioanalytical Chemistry, 2014, 406, 2467-2475.	1.9	16
47	Lack of oxidative DNA damage or initiation of carcinogenesis in the kidneys of male F344 rats given subchronic exposure to p -dichlorobenzene (pDCB)at a carcinogenic dose. Archives of Toxicology, 2000, 74, 54-59.	1.9	15
48	Combined treatment with green tea catechins and sodium nitrite selectively promotes rat forestomach carcinogenesis after initiation with N-methyl-N'- nitro-N-nitrosoguanidine. Cancer Science, 2007, 98, 949-957.	1.7	15
49	Lack of nrf2 results in progression of proliferative lesions to neoplasms induced by long-term exposure to non-genotoxic hepatocarcinogens involving oxidative stress. Experimental and Toxicologic Pathology, 2014, 66, 19-26.	2.1	15
50	Determination of Lucidin-Specific DNA Adducts by Liquid Chromatography with Tandem Mass Spectrometry in the Livers and Kidneys of Rats Given Lucidin-3-O-primeveroside. Chemical Research in Toxicology, 2012, 25, 1112-1118.	1.7	14
51	Possible involvement of NO-mediated oxidative stress in induction of rat forestomach damage and cell proliferation by combined treatment with catechol and sodium nitrite. Archives of Biochemistry and Biophysics, 2006, 447, 127-135.	1.4	13
52	Lack of in vivo mutagenicity and oxidative DNA damage by flumequine in the livers of gpt delta mice. Archives of Toxicology, 2007, 81, 63-69.	1.9	13
53	Chemical structure-related mechanisms underlying in vivo genotoxicity induced by nitrofurantoin and its constituent moieties in gpt delta rats. Toxicology, 2015, 331, 125-135.	2.0	12
54	Development of a Medium-term Animal Model Using <i>gpt</i> Delta Rats to Evaluate Chemical Carcinogenicity and Genotoxicity. Journal of Toxicologic Pathology, 2013, 26, 19-27.	0.3	12

#	Article	IF	CITATIONS
55	Reactive Oxygen and Nitrogen Oxide Species-induced Stress, a Major Intrinsic Factor Involved in Carcinogenic Processes and a Possible Target for Cancer Prevention. Asian Pacific Journal of Cancer Prevention, 2002, 3, 313-318.	0.5	12
56	Pentachlorophenol (but not Phenobarbital) Promotes Intrahepatic Biliary Cysts Induced by Diethylnitrosamine to Cholangio Cystic Neoplasms in B6C3F1 Mice Possibly Due to Oxidative Stress. Toxicologic Pathology, 2003, 31, 10-13.	0.9	11
57	Combined Ascorbic Acid and Sodium Nitrite Treatment Induces Oxidative DNA Damage-Associated Mutagenicity In Vitro, but Lacks Initiation Activity in Rat Forestomach Epithelium. Toxicological Sciences, 2008, 104, 274-282.	1.4	11
58	Butylhydroxytoluene (BHT) increases susceptibility of transgenic rasH2 mice to lung carcinogenesis. Journal of Cancer Research and Clinical Oncology, 2001, 127, 583-590.	1.2	10
59	Enhancement of esophageal carcinogenesis in acid reflux model rats treated with ascorbic acid and sodium nitrite in combination with or without initiation. Cancer Science, 2007, 99, 071113200242003-???.	1.7	10
60	Antigenotoxic effects of <i>p53</i> on spontaneous and ultraviolet light B–induced deletions in the epidermis of <i>gpt</i> delta transgenic mice. Environmental and Molecular Mutagenesis, 2011, 52, 244-252.	0.9	10
61	Mechanisms of oxidative stress-induced <i>in vivo</i> mutagenicity by potassium bromate and nitrofurantoin. Journal of Toxicologic Pathology, 2018, 31, 179-188.	0.3	10
62	The Mouse rasH2/BHT Model as anin vivoRapid Assay for Lung Carcinogens. Japanese Journal of Cancer Research, 2002, 93, 861-866.	1.7	9
63	Simultaneous induction of non-neoplastic and neoplastic lesions with highly proliferative hepatocytes following dietary exposure of rats to tocotrienol for 2Âyears. Archives of Toxicology, 2009, 83, 1021-1030.	1.9	7
64	Effects of co-treatment of dextran sulfate sodium and MeIQx on genotoxicity and possible carcinogenicity in the colon of p53-deficient mice. Journal of Toxicological Sciences, 2010, 35, 731-741.	0.7	7
65	<i>In vivo</i> genotoxicity of 1-methylnaphthalene from comprehensive toxicity studies with B6C3F1 <i>gpt</i> delta mice. Journal of Toxicological Sciences, 2012, 37, 711-721.	0.7	7
66	A medium-term gpt delta rat model as an in vivo system for analysis of renal carcinogenesis and the underlying mode of action. Experimental and Toxicologic Pathology, 2015, 67, 31-39.	2.1	7
67	Characterization of nitrated phenolic compounds for their anti-oxidant, pro-oxidant, and nitration activities. Archives of Biochemistry and Biophysics, 2011, 513, 10-18.	1.4	6
68	Improvement and validation of a medium-term gpt delta rat model for predicting chemical carcinogenicity and underlying mode of action. Experimental and Toxicologic Pathology, 2014, 66, 313-321.	2.1	6
69	Dietary catechol causes increased oxidative DNA damage in the livers of mice treated with acetaminophen. Toxicology, 2009, 263, 93-99.	2.0	5
70	Enhancing effects of carbon tetrachloride on in vivo mutagenicity in the liver of mice fed 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MelQx). Journal of Toxicological Sciences, 2010, 35, 709-720.	0.7	5
71	Role of oxidative stress in the chemical structure-related genotoxicity of nitrofurantoin in <i>Nrf2</i> -deficient <i>gpt</i> delta mice. Journal of Toxicologic Pathology, 2018, 31, 169-178.	0.3	5
72	Mechanisms Underlying Exacerbation of Osmotic Nephrosis Caused by Pre-existing Kidney Injury. Toxicological Sciences, 2018, 165, 420-430.	1.4	5

TAKASHI UMEMURA

#	Article	IF	CITATIONS
73	Effects of inhibition of hepatic sulfotransferase activity on renal genotoxicity induced by lucidinâ€3―O â€primeveroside. Journal of Applied Toxicology, 2019, 39, 650-657.	1.4	4
74	In vivo Approaches to Study Mechanism of Action of Genotoxic Carcinogens. Genes and Environment, 2008, 30, 120-124.	0.9	4
75	Possible Carcinogenic Mechanisms Underlying Renal Carcinogens in Food. Food Safety (Tokyo, Japan), 2014, 2, 17-30.	1.0	3
76	Furan Induced Characteristic Glutathione <i>S</i> -Transferase Placental Form-Positive Foci in Terms of Cell Kinetics and Gene Expression. Toxicologic Pathology, 2020, 48, 756-765.	0.9	3
77	Lack of promotion activity of diacylglycerol oil on 4-nitroquinoline 1-oxide induced carcinogenesis in the oral cavity of SD rats. Food and Chemical Toxicology, 2008, 46, 3206-3212.	1.8	2
78	In vivo reporter gene mutation and micronucleus assays in gpt delta mice treated with a flame retardant decabromodiphenyl ether. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2017, 816-817, 7-11.	0.9	2
79	Phosphorylation of protein phosphatase 2A facilitated an early stage of chemical carcinogenesis. Toxicology and Applied Pharmacology, 2017, 336, 75-83.	1.3	2
80	DNA modifications that do not cause gene mutations confer the potential for mutagenicity by combined treatment with food chemicals. Food and Chemical Toxicology, 2019, 129, 144-152.	1.8	2
81	Background data of 2-year-old male and female F344 <i>gpt</i> delta rats. Journal of Toxicologic Pathology, 2021, 34, 23-31.	0.3	1
82	No Effect of High Fat Diet-Induced Obesity on Spontaneous Reporter Gene Mutations in gpt Delta Mice. Asian Pacific Journal of Cancer Prevention, 2014, 15, 7149-7152.	0.5	1
83	The role of DNA polymerase ζ in benzo[a]pyrene-induced mutagenesis in the mouse lung. Mutagenesis, 2021, 36, 155-164.	1.0	0
84	Approach to understanding the modes of action underlying ochratoxin A-induced renal carcinogenesis. Mycotoxins, 2012, 62, 143-148.	0.2	0