Tun Yuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2257198/publications.pdf

Version: 2024-02-01

516710 580821 25 25 822 16 citations h-index g-index papers 28 28 28 1453 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Collagen hydrogel as an immunomodulatory scaffold in cartilage tissue engineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2014, 102, 337-344.	3.4	117
2	Hydrogels of collagen/chondroitin sulfate/hyaluronan interpenetrating polymer network for cartilage tissue engineering. Journal of Materials Science: Materials in Medicine, 2012, 23, 2267-2279.	3.6	107
3	Asymmetric polyurethane membrane with <i>in situâ€</i> generated nanoâ€TiO ₂ as wound dressing. Journal of Applied Polymer Science, 2011, 119, 1532-1541.	2.6	76
4	Icariin conjugated hyaluronic acid/collagen hydrogel for osteochondral interface restoration. Acta Biomaterialia, 2018, 74, 156-167.	8.3	75
5	Fabrication and characterization of collagen-based injectable and self-crosslinkable hydrogels for cell encapsulation. Colloids and Surfaces B: Biointerfaces, 2018, 167, 448-456.	5.0	55
6	Electrospun in-situ hybrid polyurethane/nano-TiO2 as wound dressings. Fibers and Polymers, 2011, 12, 207-213.	2.1	51
7	Modulation of immunological properties of allogeneic mesenchymal stem cells by collagen scaffolds in cartilage tissue engineering. Journal of Biomedical Materials Research - Part A, 2011, 98A, 332-341.	4.0	47
8	Regulation of the secretion of immunoregulatory factors of mesenchymal stem cells (MSCs) by collagen-based scaffolds during chondrogenesis. Materials Science and Engineering C, 2017, 70, 983-991.	7.3	44
9	Hydroxypropylcellulose enhanced high viscosity endoscopic mucosal dissection intraoperative chitosan thermosensitive hydrogel. Carbohydrate Polymers, 2019, 209, 198-206.	10.2	29
10	Development of chitosan/glycerophosphate/collagen thermo-sensitive hydrogel for endoscopic treatment of mucosectomy-induced ulcer. Materials Science and Engineering C, 2019, 103, 109870.	7.3	28
11	A novel biomimetic composite substitute of PLLA/gelatin nanofiber membrane for dura repairing. Neurological Research, 2017, 39, 819-829.	1.3	24
12	A New Absorbable Synthetic Substitute With Biomimetic Design for Dural Tissue Repair. Artificial Organs, 2016, 40, 403-413.	1.9	23
13	Chondrogenic differentiation and immunological properties of mesenchymal stem cells in collagen type I hydrogel. Biotechnology Progress, 2010, 26, 1749-1758.	2.6	21
14	Influences of the steam sterilization on the properties of calcium phosphate porous bioceramics. Journal of Materials Science: Materials in Medicine, 2016, 27, 5.	3.6	20
15	Lactobionic acid-modified chitosan thermosensitive hydrogels that lift lesions and promote repair in endoscopic submucosal dissection. Carbohydrate Polymers, 2021, 263, 118001.	10.2	19
16	Controlled degradation of polylactic acid grafting <i>N</i> â€vinyl pyrrolidone induced by gamma ray radiation. Journal of Applied Polymer Science, 2013, 130, 704-709.	2.6	17
17	Conjugated icariin promotes tissue-engineered cartilage formation in hyaluronic acid/collagen hydrogel. Process Biochemistry, 2015, 50, 2242-2250.	3.7	17
18	The effect of stress and tissue fluid microenvironment on allogeneic chondrocytes inÂvivo and the immunological properties of engineered cartilage. Biomaterials, 2011, 32, 6017-6024.	11.4	16

Tun Yuan

#	Article	IF	CITATION
19	Adiponectin ameliorates the apoptotic effects of paraquat on alveolar type II cells via improvements in mitochondrial function. Molecular Medicine Reports, 2016, 14, 746-752.	2.4	14
20	Chitosan thermosensitive hydrogels based on lyophilizate powders demonstrate significant potential for clinical use in endoscopic submucosal dissection procedures. International Journal of Biological Macromolecules, 2021, 184, 593-603.	7.5	9
21	In vivo immunological properties research on mesenchymal stem cells based engineering cartilage by a dialyzer pocket model. Journal of Materials Science: Materials in Medicine, 2017, 28, 150.	3.6	4
22	Evaluating platelet activation related to the degradation of biomaterials using molecular markers. Colloids and Surfaces B: Biointerfaces, 2019, 184, 110516.	5.0	3
23	Feasibility study of use of rabbit blood to evaluate platelet activation by medical devices. Thrombosis Research, 2020, 185, 171-179.	1.7	3
24	A simple, safe and easily accessible polyvinyl alcohol hydrogel for wound cleaning. Journal of Biomaterials Applications, 2022, 36, 1737-1747.	2.4	2
25	Evaluating platelet activation related to the degradation products of biomaterials using molecular markers. Journal of Materials Chemistry B, 2020, 8, 7659-7666.	5.8	1