
Christopher W Cowan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/225714/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The histone methyltransferase G9a mediates stressâ€regulated alcohol drinking. Addiction Biology, 2022, 27, e13060.	2.6	3
2	A Subset of Nucleus Accumbens Neurons Receiving Dense and Functional Prelimbic Cortical Input Are Required for Cocaine Seeking. Frontiers in Cellular Neuroscience, 2022, 16, 844243.	3.7	8
3	Clinical findings from the landmark <i>MEF2C</i> <scp>â€related</scp> disorders natural history study. Molecular Genetics & Genomic Medicine, 2022, 10, e1919.	1.2	3
4	Repeated methamphetamine administration produces cognitive deficits through augmentation of GABAergic synaptic transmission in the prefrontal cortex. Neuropsychopharmacology, 2022, 47, 1816-1825.	5.4	5
5	Sex-dependent role for EPHB2 in brain development and autism-associated behavior. Neuropsychopharmacology, 2021, 46, 2021-2029.	5.4	3
6	The activity-regulated cytoskeleton-associated protein, Arc/Arg3.1, influences mouse cocaine self-administration. Pharmacology Biochemistry and Behavior, 2020, 188, 172818.	2.9	20
7	Relapse-Associated Transient Synaptic Potentiation Requires Integrin-Mediated Activation of Focal Adhesion Kinase and Cofilin in D1-Expressing Neurons. Journal of Neuroscience, 2020, 40, 8463-8477.	3.6	16
8	MEF2C Hypofunction in Neuronal and Neuroimmune Populations Produces MEF2C Haploinsufficiency Syndrome–like Behaviors in Mice. Biological Psychiatry, 2020, 88, 488-499.	1.3	33
9	Opposing Regulation of Cocaine Seeking by Glutamate and GABA Neurons in the Ventral Pallidum. Cell Reports, 2020, 30, 2018-2027.e3.	6.4	58
10	An essential role for MEF2C in the cortical response to loss of sleep in mice. ELife, 2020, 9, .	6.0	25
11	Knockdown of the histone di-methyltransferase G9a in nucleus accumbens shell decreases cocaine self-administration, stress-induced reinstatement, and anxiety. Neuropsychopharmacology, 2019, 44, 1370-1376.	5.4	29
12	Emerging roles for MEF2 in brain development and mental disorders. Current Opinion in Neurobiology, 2019, 59, 49-58.	4.2	40
13	Activityâ€regulated cytoskeletonâ€associated protein (Arc/Arg3.1) regulates anxiety―and noveltyâ€related behaviors. Genes, Brain and Behavior, 2019, 18, e12561.	2.2	25
14	It is a complex issue: emerging connections between epigenetic regulators in drug addiction. European Journal of Neuroscience, 2019, 50, 2477-2491.	2.6	16
15	Role of Dorsal Striatum Histone Deacetylase 5 in Incubation of Methamphetamine Craving. Biological Psychiatry, 2018, 84, 213-222.	1.3	34
16	Novel role and regulation of HDAC4 in cocaineâ€related behaviors. Addiction Biology, 2018, 23, 653-664.	2.6	19
17	Inactivation of NMDA Receptors in the Ventral Tegmental Area during Cocaine Self-Administration Prevents GluA1 Upregulation but with Paradoxical Increases in Cocaine-Seeking Behavior. Journal of Neuroscience, 2018, 38, 575-585.	3.6	8
18	Any Way You Splice It: New Molecular Mechanisms of Cocaine-Induced Alternative Gene Expression. Biological Psychiatry, 2018, 84, 162-164.	1.3	0

CHRISTOPHER W COWAN

#	Article	IF	CITATIONS
19	HDAC5 and Its Target Gene, Npas4, Function in the Nucleus Accumbens to Regulate Cocaine-Conditioned Behaviors. Neuron, 2017, 96, 130-144.e6.	8.1	88
20	BDNF-TrkB controls cocaine-induced dendritic spines in rodent nucleus accumbens dissociated from increases in addictive behaviors. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9469-9474.	7.1	32
21	EphB1 and EphB2 intracellular domains regulate the formation of the corpus callosum and anterior commissure. Developmental Neurobiology, 2016, 76, 405-420.	3.0	18
22	Assessment of Cocaine-induced Behavioral Sensitization and Conditioned Place Preference in Mice. Journal of Visualized Experiments, 2016, , 53107.	0.3	12
23	MEF2C regulates cortical inhibitory and excitatory synapses and behaviors relevant to neurodevelopmental disorders. ELife, 2016, 5, .	6.0	138
24	Use of Adenoâ€Associated and Herpes Simplex Viral Vectors for In Vivo Neuronal Expression in Mice. Current Protocols in Neuroscience, 2015, 73, 4.37.1-4.37.31.	2.6	20
25	EphB receptor forward signaling regulates area-specific reciprocal thalamic and cortical axon pathfinding. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2188-2193.	7.1	35
26	Fragile X Mental Retardation Protein Regulates Synaptic and Behavioral Plasticity to Repeated Cocaine Administration. Neuron, 2014, 82, 645-658.	8.1	61
27	Postsynaptic FMRP bidirectionally regulates excitatory synapses as a function of developmental age and MEF2 activity. Molecular and Cellular Neurosciences, 2013, 56, 39-49.	2.2	27
28	EphB2 receptor forward signaling controls cortical growth cone collapse via Nck and Pak. Molecular and Cellular Neurosciences, 2013, 52, 106-116.	2.2	29
29	Emerging roles of actin cytoskeleton regulating enzymes in drug addiction: actin or reactin'?. Current Opinion in Neurobiology, 2013, 23, 507-512.	4.2	35
30	Striking a balance in fragile X. Nature Medicine, 2013, 19, 1370-1371.	30.7	0
31	Plexins Are GTPase-Activating Proteins for Rap and Are Activated by Induced Dimerization. Science Signaling, 2012, 5, ra6.	3.6	143
32	A chemical genetic approach reveals distinct EphB signaling mechanisms during brain development. Nature Neuroscience, 2012, 15, 1645-1654.	14.8	33
33	Multiple Autism-Linked Genes Mediate Synapse Elimination via Proteasomal Degradation of a Synaptic Scaffold PSD-95. Cell, 2012, 151, 1581-1594.	28.9	235
34	Histone Deacetylase 5 Limits Cocaine Reward through cAMP-Induced Nuclear Import. Neuron, 2012, 73, 108-120.	8.1	99
35	Essential Role for Vav Guanine Nucleotide Exchange Factors in Brain-Derived Neurotrophic Factor-Induced Dendritic Spine Growth and Synapse Plasticity. Journal of Neuroscience, 2011, 31, 12426-12436.	3.6	52
36	Guidance Molecules in Synapse Formation and Plasticity. Cold Spring Harbor Perspectives in Biology, 2010, 2, a001842-a001842.	5.5	199

#	Article	IF	CITATIONS
37	Fragile X Mental Retardation Protein Is Required for Synapse Elimination by the Activity-Dependent Transcription Factor MEF2. Neuron, 2010, 66, 191-197.	8.1	135
38	Cocaine Regulates MEF2 to Control Synaptic and Behavioral Plasticity. Neuron, 2008, 59, 621-633.	8.1	246
39	Striatal dysregulation of Cdk5 alters locomotor responses to cocaine, motor learning, and dendritic morphology. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18561-18566.	7.1	49
40	Regulation of Synaptic Connectivity With Chronic Cocaine. American Journal of Psychiatry, 2008, 165, 1393-1393.	7.2	2
41	Activity-Dependent Regulation of MEF2 Transcription Factors Suppresses Excitatory Synapse Number. Science, 2006, 311, 1008-1012.	12.6	516
42	Essential Role of Vav Family Guanine Nucleotide Exchange Factors in EphA Receptor-Mediated Angiogenesis. Molecular and Cellular Biology, 2006, 26, 4830-4842.	2.3	122
43	A Novel Role for Extracellular Signal-Regulated Kinase 5 and Myocyte Enhancer Factor 2 in Medulloblastoma Cell Death. Cancer Research, 2005, 65, 5683-5689.	0.9	32
44	Eph-Dependent Tyrosine Phosphorylation of Ephexin1 Modulates Growth Cone Collapse. Neuron, 2005, 46, 191-204.	8.1	216
45	Vav Family GEFs Link Activated Ephs to Endocytosis and Axon Guidance. Neuron, 2005, 46, 205-217.	8.1	217
46	CREB Transcriptional Activity in Neurons Is Regulated by Multiple, Calcium-Specific Phosphorylation Events. Neuron, 2002, 34, 221-233.	8.1	261
47	REST Acts through Multiple Deacetylase Complexes. Neuron, 2001, 31, 339-340.	8.1	30
48	Structural determinants for regulation of phosphodiesterase by a G protein at 2.0 Ã Nature, 2001, 409, 1071-1077.	27.8	256
49	Dependence of RGS9–1 Membrane Attachment on Its C-terminal Tail. Journal of Biological Chemistry, 2001, 276, 48961-48966.	3.4	9
50	Phosphorylation of RGS9-1 by an Endogenous Protein Kinase in Rod Outer Segments. Journal of Biological Chemistry, 2001, 276, 22287-22295.	3.4	40
51	[35] Enzymology of GTPase acceleration in phototransduction. Methods in Enzymology, 2000, 315, 524-538.	1.0	31
52	Multiple Zinc Binding Sites in Retinal Rod cGMP Phosphodiesterase, PDE6αβ. Journal of Biological Chemistry, 2000, 275, 20572-20577.	3.4	47
53	RGS9, a GTPase Accelerator for Phototransduction. Neuron, 1998, 20, 95-102.	8.1	355