
Kazumitsu Onizuka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2257095/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Site-Specific Covalent Modification of RNA Guided by Functionality-Transfer Oligodeoxynucleotides. Bioconjugate Chemistry, 2009, 20, 799-803.	3.6	43
2	Pin-point chemical modification of RNA with diverse molecules through the functionality transfer reaction and the copper-catalyzed azide–alkyne cycloaddition reaction. Chemical Communications, 2011, 47, 5004.	4.1	40
3	Structure-Guided Control of siRNA Off-Target Effects. Journal of the American Chemical Society, 2016, 138, 8667-8669.	13.7	35
4	The oligodeoxynucleotide probes for the site-specific modification of RNA. Chemical Society Reviews, 2011, 40, 5698.	38.1	29
5	A new usage of functionalized oligodeoxynucleotide probe for site-specific modification of a guanine base within RNA. Nucleic Acids Research, 2010, 38, 1760-1766.	14.5	25
6	4-vinyl-substituted pyrimidine nucleosides exhibit the efficient and selective formation of interstrand cross-links with RNA and duplex DNA. Nucleic Acids Research, 2013, 41, 6774-6781.	14.5	25
7	Short Interfering RNA Guide Strand Modifiers from Computational Screening. Journal of the American Chemical Society, 2013, 135, 17069-17077.	13.7	22
8	A new strategy for site-specific alkylation of DNA using oligonucleotides containing an abasic site and alkylating probes. Chemical Communications, 2015, 51, 14885-14888.	4.1	17
9	Selective alkylation of T–T mismatched DNA using vinyldiaminotriazine–acridine conjugate. Nucleic Acids Research, 2018, 46, 1059-1068.	14.5	17
10	An efficient and simple method for site-selective modification of O6-methyl-2′-deoxyguanosine in DNA. Chemical Communications, 2012, 48, 3969.	4.1	16
11	Activation and Alteration of Base Selectivity by Metal Cations in the Functionality-Transfer Reaction for RNA Modification. Bioconjugate Chemistry, 2010, 21, 1508-1512.	3.6	15
12	Remarkable acceleration of a DNA/RNA inter-strand functionality transfer reaction to modify a cytosine residue: the proximity effect via complexation with a metal cation. Nucleic Acids Research, 2014, 42, 8808-8815.	14.5	14
13	Alkyne–Alkyne Photo-cross-linking on the Flipping-out Field. Organic Letters, 2019, 21, 2833-2837.	4.6	14
14	Stereoselective synthesis of (+)-2-deoxyolivin based on cycloaddition reaction between the homophthalic anhydride and the chiral cyclohexenone derivative. Tetrahedron, 2008, 64, 7211-7218.	1.9	13
15	NEIL1 Binding to DNA Containing 2′â€Fluorothymidine Glycol Stereoisomers and the Effect of Editing. ChemBioChem, 2012, 13, 1338-1348.	2.6	13
16	Automatic Pseudorotaxane Formation Targeting on Nucleic Acids Using a Pair of Reactive Oligodeoxynucleotides. Journal of the American Chemical Society, 2014, 136, 7201-7204.	13.7	13
17	Stabilization of the i-motif structure by the intra-strand cross-link formation. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 3307-3310.	2.2	13
18	Reactive OFF-ON type alkylating agents for higher-ordered structures of nucleic acids. Nucleic Acids Research, 2019, 47, 6578-6589.	14.5	13

KAZUMITSU ONIZUKA

#	Article	IF	CITATIONS
19	Functional G-Quadruplex Binding Molecules. Chemistry Letters, 2020, 49, 771-780.	1.3	13
20	Alkylating probes for the G-quadruplex structure and evaluation of the properties of the alkylated G-quadruplex DNA. Organic and Biomolecular Chemistry, 2018, 16, 1436-1441.	2.8	12
21	Rapid Alkene–Alkene Photo-Cross-Linking on the Base-Flipping-Out Field in Duplex DNA. Journal of Organic Chemistry, 2022, 87, 2267-2276.	3.2	12
22	Siteâ€Specific Modification of the 6â€Amino Group of Adenosine in RNA by an Interstrand Functionalityâ€Transfer Reaction With an Sâ€Functionalized 4â€Thiothymidine. ChemBioChem, 2015, 16, 1199-1204.	2.6	11
23	Phosphorylated 5-ethynyl-2′-deoxyuridine for advanced DNA labeling. Organic and Biomolecular Chemistry, 2015, 13, 4589-4595.	2.8	11
24	Vinyldiaminotriazine-acridine conjugate as G-quadruplex alkylating agent. Bioorganic and Medicinal Chemistry, 2018, 26, 3551-3558.	3.0	11
25	Guide Strand 3′â€End Modifications Regulate siRNA Specificity. ChemBioChem, 2016, 17, 2340-2345.	2.6	10
26	Efficient Thymidine-Selective DNA Interstrand Photo-activated Crosslinking by the 6-Thioguanine Connected <i>via</i> an Ethylene-Linker to the 2′-Deoxyribose Unit. Chemical and Pharmaceutical Bulletin, 2016, 64, 1315-1320.	1.3	9
27	A New Odorless Procedure for the Synthesis of 2′-Deoxy-6-Thioguanosine and Its Incorporation into Oligodeoxynucleotides. Nucleosides, Nucleotides and Nucleic Acids, 2009, 28, 752-760.	1.1	8
28	Pseudorotaxane formation via the slippage process with chemically cyclized oligonucleotides. Nucleic Acids Research, 2017, 45, 5036-5047.	14.5	8
29	Synthesis of crosslinked 2′-OMe RNA duplexes and their application for effective inhibition of miRNA function. Bioorganic and Medicinal Chemistry Letters, 2021, 48, 128257.	2.2	8
30	Synthesis of native-like crosslinked duplex RNA and study of its properties. Bioorganic and Medicinal Chemistry, 2017, 25, 2191-2199.	3.0	7
31	Development of novel thioguanosine analogs with the ability to specifically modify cytidine. Nucleic Acids Symposium Series, 2007, 51, 5-6.	0.3	6
32	Hybridization-specific chemical reactions to create interstrand crosslinking and threaded structures of nucleic acids. Organic and Biomolecular Chemistry, 2022, 20, 4699-4708.	2.8	6
33	Structural optimization of pseudorotaxane-forming oligonucleotides for efficient and stable complex formation. Nucleic Acids Research, 2018, 46, 8710-8719.	14.5	4
34	Site-specific modification of RNA by functionality-transfer ODN probes. Nucleic Acids Symposium Series, 2009, 53, 67-68.	0.3	3
35	Synthesis and properties of cross-linkable DNA duplex using 4-amino-2-oxo-6-vinyl-1,3,5-triazine. Tetrahedron, 2017, 73, 1424-1435.	1.9	3
36	Selective alkylation of parallel G-quadruplex structure. Organic and Biomolecular Chemistry, 2021, 19, 2891-2894.	2.8	3

#	Article	IF	CITATIONS
37	Oligodeoxynucleotide Containing S â€Functionalized 2′â€Deoxyâ€6â€Thioguanosine: Facile Tools for Baseâ€Selective and Siteâ€Specific Internal Modification of RNA. Current Protocols in Nucleic Acid Chemistry, 2012, 48, Unit 4.49.1-16.	0.5	2

³⁸ Development of Middle-Size Molecules for Alkylation to Higher-Order Structures of Nucleic Acids. , 2021, , 35-53.