
Jerome Parcq

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2257029/publications.pdf Version: 2024-02-01

IEDOME DADCO

#	Article	IF	CITATIONS
1	tPA-NMDAR Signaling Blockade Reduces the Incidence of Intracerebral Aneurysms. Translational Stroke Research, 2022, 13, 1005-1016.	4.2	5
2	Optimized tPA: A non-neurotoxic fibrinolytic agent for the drainage of intracerebral hemorrhages. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 1180-1189.	4.3	15
3	Activation of cell surface GRP78 decreases endoplasmic reticulum stress and neuronal death. Cell Death and Differentiation, 2017, 24, 1518-1529.	11.2	56
4	F376A/M388Aâ€solulin, a new promising antifibrinolytic for severe haemophilia A. Haemophilia, 2017, 23, 319-325.	2.1	1
5	Nano-zymography Using Laser-Scanning Confocal Microscopy Unmasks Proteolytic Activity of Cell-Derived Microparticles. Theranostics, 2016, 6, 610-626.	10.0	12
6	The plasminogen activation system in neuroinflammation. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 395-402.	3.8	52
7	Retinal safety of intravitreal rtPA in healthy rats and under excitotoxic conditions. Molecular Vision, 2016, 22, 1332-1341.	1.1	3
8	Impacts of tissue-type plasminogen activator (tPA) on neuronal survival. Frontiers in Cellular Neuroscience, 2015, 9, 415.	3.7	69
9	Understanding the Functions of Endogenous and Exogenous Tissue-Type Plasminogen Activator During Stroke. Stroke, 2015, 46, 314-320.	2.0	46
10	Conformations of tissue plasminogen activator (tPA) orchestrate neuronal survival by a crosstalk between EGFR and NMDAR. Cell Death and Disease, 2015, 6, e1924-e1924.	6.3	31
11	Molecular requirements for safer generation of thrombolytics by bioengineering the tissue-type plasminogen activator AÂchain. Journal of Thrombosis and Haemostasis, 2013, 11, 539-546.	3.8	22
12	Unveiling an exceptional zymogen: the single-chain form of tPA is a selective activator of NMDA receptor-dependent signaling and neurotoxicity. Cell Death and Differentiation, 2012, 19, 1983-1991.	11.2	60
13	Glutamate Controls tPA Recycling by Astrocytes, Which in Turn Influences Glutamatergic Signals. Journal of Neuroscience, 2012, 32, 5186-5199.	3.6	67
14	Antibodies Preventing the Interaction of Tissue-Type Plasminogen Activator With N-Methyl- <scp>d</scp> -Aspartate Receptors Reduce Stroke Damages and Extend the Therapeutic Window of Thrombolysis. Stroke, 2011, 42, 2315-2322.	2.0	63
15	HMGB-1 promotes fibrinolysis and reduces neurotoxicity mediated by tissue plasminogen activator. Journal of Cell Science, 2011, 124, 2070-2076.	2.0	24
16	Tissue plasminogen activator prevents white matter damage following stroke. Journal of Experimental Medicine, 2011, 208, 1229-1242.	8.5	72
17	Toward Safer Thrombolytic Agents in Stroke: Molecular Requirements for NMDA Receptor-Mediated Neurotoxicity. Journal of Cerebral Blood Flow and Metabolism, 2008, 28, 1212-1221.	4.3	74