Matthew D Weitzman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2256958/publications.pdf

Version: 2024-02-01

83 papers 6,473 citations

42 h-index 77 g-index

88 all docs 88 docs citations

88 times ranked 6855 citing authors

#	Article	IF	Citations
1	Adenovirus oncoproteins inactivate the Mre11–Rad50–NBS1 DNA repair complex. Nature, 2002, 418, 348-352.	13.7	468
2	The Mre11 complex is required for ATM activation and the G2/M checkpoint. EMBO Journal, 2003, 22, 6610-6620.	3.5	435
3	APOBEC3A Is a Potent Inhibitor of Adeno-Associated Virus and Retrotransposons. Current Biology, 2006, 16, 480-485.	1.8	349
4	The MRN complex in doubleâ€strand break repair and telomere maintenance. FEBS Letters, 2010, 584, 3682-3695.	1.3	343
5	Codon-usage-based inhibition of HIV protein synthesis by human schlafen 11. Nature, 2012, 491, 125-128.	13.7	289
6	Differential L1 regulation in pluripotent stem cells of humans and apes. Nature, 2013, 503, 525-529.	13.7	220
7	DNA repair proteins affect the lifecycle of herpes simplex virus 1. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 5844-5849.	3.3	216
8	Using or abusing: viruses and the cellular DNA damage response. Trends in Microbiology, 2007, 15, 119-126.	3.5	199
9	APOBEC3A can activate the DNA damage response and cause cell ycle arrest. EMBO Reports, 2011, 12, 444-450.	2.0	197
10	Impaired Death Receptor Signaling in Leukemia Causes Antigen-Independent Resistance by Inducing CAR T-cell Dysfunction. Cancer Discovery, 2020, 10, 552-567.	7.7	184
11	A viral E3 ligase targets RNF8 and RNF168 to control histone ubiquitination and DNA damage responses. EMBO Journal, 2010, 29, 943-955.	3.5	162
12	Genomes in Conflict: Maintaining Genome Integrity During Virus Infection. Annual Review of Microbiology, 2010, 64, 61-81.	2.9	161
13	SAMHD1 Restricts Herpes Simplex Virus 1 in Macrophages by Limiting DNA Replication. Journal of Virology, 2013, 87, 12949-12956.	1.5	123
14	Virus DNA Replication and the Host DNA Damage Response. Annual Review of Virology, 2018, 5, 141-164.	3.0	123
15	Deaminase-Independent Inhibition of Parvoviruses by the APOBEC3A Cytidine Deaminase. PLoS Pathogens, 2009, 5, e1000439.	2.1	120
16	APOBEC3A deaminates transiently exposed single-strand DNA during LINE-1 retrotransposition. ELife, 2014, 3, e02008.	2.8	113
17	Direct RNA sequencing reveals m6A modifications on adenovirus RNA are necessary for efficient splicing. Nature Communications, 2020, 11, 6016.	5.8	111
18	A core viral protein binds host nucleosomes to sequester immune danger signals. Nature, 2016, 535, 173-177.	13.7	110

#	Article	IF	Citations
19	The Intrinsic Antiviral Defense to Incoming HSV-1 Genomes Includes Specific DNA Repair Proteins and Is Counteracted by the Viral Protein ICPO. PLoS Pathogens, 2011, 7, e1002084.	2.1	108
20	Adenovirus Type 5 E4orf3 Protein Targets the Mre11 Complex to Cytoplasmic Aggresomes. Journal of Virology, 2005, 79, 11382-11391.	1.5	102
21	Interactions of viruses with the cellular DNA repair machinery. DNA Repair, 2004, 3, 1165-1173.	1.3	101
22	Inactivating intracellular antiviral responses during adenovirus infection. Oncogene, 2005, 24, 7686-7696.	2.6	92
23	What's the Damage? The Impact of Pathogens on Pathways that Maintain Host Genome Integrity. Cell Host and Microbe, 2014, 15, 283-294.	5.1	90
24	Mislocalization of the MRN complex prevents ATR signaling during adenovirus infection. EMBO Journal, 2009, 28, 652-662.	3.5	87
25	Molecular Adaptors for Vascular-Targeted Adenoviral Gene Delivery. Human Gene Therapy, 2000, 11, 1971-1981.	1.4	86
26	Serotype-Specific Reorganization of the Mre11 Complex by Adenoviral E4orf3 Proteins. Journal of Virology, 2005, 79, 6664-6673.	1.5	86
27	Time-resolved Global and Chromatin Proteomics during Herpes Simplex Virus Type 1 (HSV-1) Infection. Molecular and Cellular Proteomics, 2017, 16, S92-S107.	2.5	76
28	STAT3–BDNF–TrkB signalling promotes alveolar epithelial regeneration after lung injury. Nature Cell Biology, 2020, 22, 1197-1210.	4.6	71
29	Viral E3ÂUbiquitin Ligase-Mediated Degradation of a Cellular E3: Viral Mimicry of a Cellular Phosphorylation Mark Targets the RNF8 FHA Domain. Molecular Cell, 2012, 46, 79-90.	4.5	69
30	APOBEC3A damages the cellular genome during DNA replication. Cell Cycle, 2016, 15, 998-1008.	1.3	69
31	Structure-Function Analyses Point to a Polynucleotide-Accommodating Groove Essential for APOBEC3A Restriction Activities. Journal of Virology, 2011, 85, 1765-1776.	1.5	67
32	The Adenovirus E1b55K/E4orf6 Complex Induces Degradation of the Bloom Helicase during Infection. Journal of Virology, 2011, 85, 1887-1892.	1.5	66
33	Functions of the adenovirus E4 proteins and their impact on viral vectors. Frontiers in Bioscience - Landmark, 2005, 10, 1106.	3.0	65
34	The spectrum of APOBEC3 activity: From anti-viral agents to anti-cancer opportunities. DNA Repair, 2019, 83, 102700.	1.3	65
35	A Functional Complex of Adenovirus Proteins E1B-55kDa and E4orf6 Is Necessary To Modulate the Expression Level of p53 but Not Its Transcriptional Activity. Journal of Virology, 2000, 74, 11407-11412.	1.5	64
36	The Rep Protein of Adeno-Associated Virus Type 2 Interacts with Single-Stranded DNA-Binding Proteins That Enhance Viral Replication. Journal of Virology, 2004, 78, 441-453.	1.5	60

#	Article	IF	CITATIONS
37	Distinct Requirements of Adenovirus E1b55K Protein for Degradation of Cellular Substrates. Journal of Virology, 2008, 82, 9043-9055.	1.5	60
38	OncomiR Addiction Is Generated by a miR-155 Feedback Loop in Theileria-Transformed Leukocytes. PLoS Pathogens, 2013, 9, e1003222.	2.1	54
39	The HSV-1 ubiquitin ligase ICPO: Modifying the cellular proteome to promote infection. Virus Research, 2020, 285, 198015.	1.1	54
40	Differential Requirements of the C Terminus of Nbs1 in Suppressing Adenovirus DNA Replication and Promoting Concatemer Formation. Journal of Virology, 2008, 82, 8362-8372.	1.5	52
41	Identifying Host Factors Associated with DNA Replicated During Virus Infection. Molecular and Cellular Proteomics, 2017, 16, 2079-2097.	2.5	49
42	Viral and cellular interactions during adenovirus DNA replication. FEBS Letters, 2019, 593, 3531-3550.	1.3	49
43	Cytosine Deaminase APOBEC3A Sensitizes Leukemia Cells to Inhibition of the DNA Replication Checkpoint. Cancer Research, 2017, 77, 4579-4588.	0.4	48
44	Structural and functional analysis of Mre11-3. Nucleic Acids Research, 2004, 32, 1886-1893.	6.5	46
45	SAMHD1 Modulates Early Steps during Human Cytomegalovirus Infection by Limiting NF-κB Activation. Cell Reports, 2019, 28, 434-448.e6.	2.9	40
46	Genotypic and Phenotypic Diversity of Herpes Simplex Virus 2 within the Infected Neonatal Population. MSphere, 2019, 4, .	1.3	40
47	Quantitative live cell imaging reveals influenza virus manipulation of Rab11A transport through reduced dynein association. Nature Communications, 2020, 11, 23.	5.8	37
48	Rep-Dependent Initiation of Adeno-Associated Virus Type 2 DNA Replication by a Herpes Simplex Virus Type 1 Replication Complex in a Reconstituted System. Journal of Virology, 2001, 75, 10250-10258.	1.5	35
49	Take your PIKK: tumour viruses and DNA damage response pathways. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160269.	1.8	34
50	Replication Compartments of DNA Viruses in the Nucleus: Location, Location, Location. Viruses, 2020, 12, 151.	1.5	34
51	An Intrinsically Disordered Region of the DNA Repair Protein Nbs1 Is a Species-Specific Barrier to Herpes Simplex Virus 1 in Primates. Cell Host and Microbe, 2016, 20, 178-188.	5.1	33
52	Adenovirus Core Protein VII Downregulates the DNA Damage Response on the Host Genome. Journal of Virology, 2017, 91, .	1.5	32
53	Coalescing replication compartments provide the opportunity for recombination between coinfecting herpesviruses. FASEB Journal, 2019, 33, 9388-9403.	0.2	30
54	HSV-1 Remodels Host Telomeres to Facilitate Viral Replication. Cell Reports, 2014, 9, 2263-2278.	2.9	28

#	Article	IF	Citations
55	Adeno-Associated Virus Genome Interactions Important for Vector Production and Transduction. Human Gene Therapy, 2020, 31, 499-511.	1.4	27
56	Comparative proteomics identifies Schlafen 5 (SLFN5) as a herpes simplex virus restriction factor that suppresses viral transcription. Nature Microbiology, 2021, 6, 234-245.	5.9	27
57	DRUMMER—rapid detection of RNA modifications through comparative nanopore sequencing. Bioinformatics, 2022, 38, 3113-3115.	1.8	26
58	Overexpression of Cyclin A Inhibits Augmentation of Recombinant Adeno-Associated Virus Transduction by the Adenovirus E4orf6 Protein. Journal of Virology, 1999, 73, 10010-10019.	1.5	24
59	Ubiquitination at the interface of tumor viruses and DNA damage responses. Current Opinion in Virology, 2018, 32, 40-47.	2.6	23
60	Adenovirus-mediated ubiquitination alters protein–RNA binding and aids viral RNA processing. Nature Microbiology, 2020, 5, 1217-1231.	5.9	22
61	Antigen glycosylation regulates efficacy of CAR T cells targeting CD19. Nature Communications, 2022, 13, .	5.8	21
62	Characterization of histone post-translational modifications during virus infection using mass spectrometry-based proteomics. Methods, 2015, 90, 8-20.	1.9	20
63	Herpes simplex virus replication compartments: From naked release to recombining together. PLoS Pathogens, 2019, 15, e1007714.	2.1	20
64	APOBEC3 proteins and genomic stability. Cell Cycle, 2012, 11, 33-38.	1.3	19
65	Changing the ubiquitin landscape during viral manipulation of the DNA damage response. FEBS Letters, 2011, 585, 2897-2906.	1.3	18
66	Viral Ubiquitin Ligase Stimulates Selective Host MicroRNA Expression by Targeting ZEB Transcriptional Repressors. Viruses, 2017, 9, 210.	1.5	14
67	Serotype-specific restriction of wild-type adenoviruses by the cellular Mre11-Rad50-Nbs1 complex. Virology, 2018, 518, 221-231.	1.1	13
68	Histone Modifications in Papillomavirus Virion Minichromosomes. MBio, 2021, 12, .	1.8	13
69	Schlafens Can Put Viruses to Sleep. Viruses, 2022, 14, 442.	1.5	11
70	The Viral Polymerase Complex Mediates the Interaction of Viral Ribonucleoprotein Complexes with Recycling Endosomes during Sendai Virus Assembly. MBio, 2020, 11 , .	1.8	10
71	Adenovirus prevents dsRNA formation by promoting efficient splicing of viral RNA. Nucleic Acids Research, 2022, 50, 1201-1220.	6.5	10
72	Stress Flips a Chromatin Switch to Wake Up Latent Virus. Cell Host and Microbe, 2015, 18, 639-641.	5.1	7

#	Article	IF	CITATIONS
73	Interaction with the CCT chaperonin complex limits APOBEC3A cytidine deaminase cytotoxicity. EMBO Reports, 2021, 22, e52145.	2.0	7
74	Repair of protein-linked DNA double strand breaks: Using the adenovirus genome as a model substrate in cell-based assays. DNA Repair, 2019, 74, 80-90.	1.3	6
75	Adenovirus Remodeling of the Host Proteome and Host Factors Associated with Viral Genomes. MSystems, 2021, 6, e0046821.	1.7	6
76	Targeted Integration by Adeno-Associated Virus. , 2003, 76, 201-220.		5
77	Antigen Glycosylation Is a Central Regulator of CAR T Cell Efficacy. Blood, 2021, 138, 1721-1721.	0.6	2
78	Herpes Simplex Virus-2 Variation Contributes to Neurovirulence During Neonatal Infection. Journal of Infectious Diseases, 2022, 226, 1499-1509.	1.9	2
79	A Tribute to Barrie J. Carter. Human Gene Therapy, 2020, 31, 491-493.	1.4	1
80	CAR T Cell Cytotoxicity Is Dependent on Death Receptor-Driven Apoptosis. Blood, 2018, 132, 698-698.	0.6	1
81	VP22 flips the switch on cell death. Molecular Therapy, 2003, 7, 146-147.	3.7	O
82	173. HSV-2 Isolates from Neonates with Different Clinical Outcomes Exhibit Different in Vitro and in Vivo phenotypes. Open Forum Infectious Diseases, 2020, 7, S215-S216.	0.4	0
83	N6â€Methyladenosine (m ⁶ A) Modifies Regenerative Transcripts in the Intestinal Epithelium. FASEB Journal, 2022, 36, .	0.2	o