
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2256749/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Miniaturized total chemical analysis systems: A novel concept for chemical sensing. Sensors and Actuators B: Chemical, 1990, 1, 244-248.	4.0	2,605
2	Micro Total Analysis Systems. 1. Introduction, Theory, and Technology. Analytical Chemistry, 2002, 74, 2623-2636.	3.2	2,122
3	Micromachining a Miniaturized Capillary Electrophoresis-Based Chemical Analysis System on a Chip. Science, 1993, 261, 895-897.	6.0	1,749
4	Micro Total Analysis Systems. 2. Analytical Standard Operations and Applications. Analytical Chemistry, 2002, 74, 2637-2652.	3.2	1,518
5	Lab-on-a-chip: microfluidics in drug discovery. Nature Reviews Drug Discovery, 2006, 5, 210-218.	21.5	1,506
6	Capillary electrophoresis and sample injection systems integrated on a planar glass chip. Analytical Chemistry, 1992, 64, 1926-1932.	3.2	1,191
7	Chemical Amplification: Continuous-Flow PCR on a Chip. Science, 1998, 280, 1046-1048.	6.0	1,167
8	Planar chips technology for miniaturization and integration of separation techniques into monitoring systems. Journal of Chromatography A, 1992, 593, 253-258.	1.8	978
9	Micro Total Analysis Systems. Recent Developments. Analytical Chemistry, 2004, 76, 3373-3386.	3.2	950
10	Micro Total Analysis Systems. Latest Advancements and Trends. Analytical Chemistry, 2006, 78, 3887-3908.	3.2	909
11	Scaling and the design of miniaturized chemical-analysis systems. Nature, 2006, 442, 374-380.	13.7	635
12	Disposable Sensors in Diagnostics, Food, and Environmental Monitoring. Advanced Materials, 2019, 31, e1806739.	11.1	540
13	Glass chips for high-speed capillary electrophoresis separations with submicrometer plate heights. Analytical Chemistry, 1993, 65, 2637-2642.	3.2	538
14	On-Chip Free-Flow Magnetophoresis:Â Continuous Flow Separation of Magnetic Particles and Agglomerates. Analytical Chemistry, 2004, 76, 7250-7256.	3.2	435
15	Revisiting lab-on-a-chip technology for drug discovery. Nature Reviews Drug Discovery, 2012, 11, 620-632.	21.5	422
16	Latest Developments in Micro Total Analysis Systems. Analytical Chemistry, 2010, 82, 4830-4847.	3.2	411
17	Micro Total Analysis Systems: Latest Achievements. Analytical Chemistry, 2008, 80, 4403-4419.	3.2	397
18	Microstructure for efficient continuous flow mixing. Analytical Communications, 1999, 36, 213-215.	2.2	375

#	Article	IF	CITATIONS
19	High-Speed Separation of Antisense Oligonucleotides on a Micromachined Capillary Electrophoresis Device. Analytical Chemistry, 1994, 66, 2949-2953.	3.2	351
20	Chip-based microsystems for genomic and proteomic analysis. TrAC - Trends in Analytical Chemistry, 2000, 19, 364-378.	5.8	343
21	Microfluidics: Applications for analytical purposes in chemistry and biochemistry. Electrophoresis, 2008, 29, 4443-4453.	1.3	338
22	A Wireless Electrochemiluminescence Detector Applied to Direct and Indirect Detection for Electrophoresis on a Microfabricated Glass Device. Analytical Chemistry, 2001, 73, 3282-3288.	3.2	303
23	Design of an open-tubular column liquid chromatograph using silicon chip technology. Sensors and Actuators B: Chemical, 1990, 1, 249-255.	4.0	289
24	Planar glass chips for capillary electrophoresis: repetitive sample injection, quantitation, and separation efficiency. Analytical Chemistry, 1993, 65, 1481-1488.	3.2	285
25	Continuous Sample Pretreatment Using a Free-Flow Electrophoresis Device Integrated onto a Silicon Chip. Analytical Chemistry, 1994, 66, 2858-2865.	3.2	284
26	Electroosmotic pumping and electrophoretic separations for miniaturized chemical analysis systems. Journal of Micromechanics and Microengineering, 1994, 4, 257-265.	1.5	266
27	Miniaturised nucleic acid analysis. Lab on A Chip, 2004, 4, 534.	3.1	217
28	Micromachining of monocrystalline silicon and glass for chemical analysis systems A look into next century's technology or just a fashionable craze?. TrAC - Trends in Analytical Chemistry, 1991, 10, 144-149.	5.8	214
29	Advances in capillary electrochromatography and micro-high performance liquid chromatography monolithic columns for separation science. Electrophoresis, 2003, 24, 917-944.	1.3	212
30	Polymerase chain reaction in microfluidic devices. Lab on A Chip, 2016, 16, 3866-3884.	3.1	210
31	Micellar Electrokinetic Chromatography Separations and Analyses of Biological Samples on a Cyclic Planar Microstructure. Analytical Chemistry, 1996, 68, 2044-2053.	3.2	205
32	Latest Developments in Microfluidic Cell Biology and Analysis Systems. Analytical Chemistry, 2010, 82, 4848-4864.	3.2	194
33	Total nucleic acid analysis integrated on microfluidic devices. Lab on A Chip, 2007, 7, 1413.	3.1	174
34	Phaseguides: a paradigm shift in microfluidic priming and emptying. Lab on A Chip, 2011, 11, 1596.	3.1	171
35	Single-molecule fluorescence detection in microfluidic channels—the Holy Grail inÂμTAS?. Analytical and Bioanalytical Chemistry, 2005, 382, 1771-1782.	1.9	169
36	A dc Microplasma on a Chip Employed as an Optical Emission Detector for Gas Chromatography. Analytical Chemistry, 2000, 72, 2547-2552.	3.2	154

#	Article	IF	CITATIONS
37	Continuous Separation of High Molecular Weight Compounds Using a Microliter Volume Free-Flow Electrophoresis Microstructure. Analytical Chemistry, 1996, 68, 2515-2522.	3.2	145
38	Towards miniaturized electrophoresis and chemical analysis systems on silicon: an alternative to chemical sensors. Sensors and Actuators B: Chemical, 1993, 10, 107-116.	4.0	144
39	Present state of microchip electrophoresis: State of the art and routine applications. Journal of Chromatography A, 2015, 1382, 66-85.	1.8	144
40	Three-Dimensional Microfluidic Confinement for Efficient Sample Delivery to Biosensor Surfaces. Application to Immunoassays on Planar Optical Waveguides. Analytical Chemistry, 2002, 74, 5243-5250.	3.2	143
41	A Molecular Emission Detector on a Chip Employing a Direct Current Microplasma. Analytical Chemistry, 1999, 71, 2600-2606.	3.2	141
42	High-Speed Free-Flow Electrophoresis on Chip. Analytical Chemistry, 2003, 75, 5759-5766.	3.2	137
43	Narrow Sample Channel Injectors for Capillary Electrophoresis on Microchips. Analytical Chemistry, 2001, 73, 2656-2662.	3.2	118
44	Manipulation of Sample Fractions on a Capillary Electrophoresis Chip. Analytical Chemistry, 1995, 67, 2284-2287.	3.2	112
45	Design and development of a miniaturised total chemical analysis system for on-line lactate and glucose monitoring in biological samples. Analytica Chimica Acta, 1997, 346, 341-349.	2.6	110
46	Counting and sizing of particles and particle agglomerates in a microfluidic device using laser light scattering: application to a particle-enhanced immunoassay. Lab on A Chip, 2003, 3, 187.	3.1	110
47	Sub-second isoelectric focusing in free flow using a microfluidic device. Lab on A Chip, 2003, 3, 224.	3.1	110
48	On-chip free-flow magnetophoresis: Separation and detection of mixtures of magnetic particles in continuous flow. Journal of Magnetism and Magnetic Materials, 2006, 307, 237-244.	1.0	109
49	A silicon flow cell for optical detection in miniaturized total chemical analysis systems. Sensors and Actuators B: Chemical, 1992, 6, 66-70.	4.0	101
50	Microfabricated devices for fluid mixing and their application for chemical synthesis. Chemical Record, 2001, 1, 395-405.	2.9	101
51	Developments in technology and applications of microsystems. Current Opinion in Chemical Biology, 1997, 1, 410-419.	2.8	96
52	Handheld real-time PCR device. Lab on A Chip, 2016, 16, 586-592.	3.1	96
53	A circular ac magnetohydrodynamic micropump for chromatographic applications. Sensors and Actuators B: Chemical, 2003, 92, 215-221.	4.0	91
54	An integrated silicon thermopile as biosensor for the thermal monitoring of glucose, urea and penicillin. Biosensors and Bioelectronics, 1993, 8, 89-98.	5.3	90

#	Article	IF	CITATIONS
55	Micromixer-Based Time-Resolved NMR:Â Applications to Ubiquitin Protein Conformation. Analytical Chemistry, 2003, 75, 956-960.	3.2	86
56	Planar quartz chips with submicron channels for two-dimensional capillary electrophoresis applications. Journal of Micromechanics and Microengineering, 1998, 8, 24-28.	1.5	85
57	Towards Integrated Continuous-Flow Chemical Reactors. Mikrochimica Acta, 1999, 131, 19-24.	2.5	85
58	Poly(dimethylsiloxane) electrospray devices fabricated with diamond-like carbon–poly(dimethylsiloxane) coated SU-8 masters. Lab on A Chip, 2003, 3, 67-72.	3.1	83
59	An atmospheric pressure dc glow discharge on a microchip and its application as a molecular emission detector. Journal of Analytical Atomic Spectrometry, 2000, 15, 297-300.	1.6	82
60	Evaporation driven pumping for chromatography application. Lab on A Chip, 2002, 2, 219.	3.1	82
61	Electrophoretic manipulation of single DNA molecules in nanofabricated capillariesElectronic supplementary information (ESI) available: Four videoclips showing the movement of DNA molecules in nanocapillaries. See http://www.rsc.org/suppdata/lc/b3/b312592k/. Lab on A Chip, 2004, 4, 225.	3.1	82
62	A novel approach to ion separations in solution: synchronized cyclic capillary electrophoresis (SCCE). Sensors and Actuators B: Chemical, 1994, 20, 103-110.	4.0	81
63	Holographic refractive index detector for application in microchip-based separation systems. Analyst, The, 1998, 123, 1443-1447.	1.7	81
64	Labelling of proteins with 2-(4-isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid and lanthanides and detection by ICP-MS. Journal of Analytical Atomic Spectrometry, 2008, 23, 1497.	1.6	80
65	Three-dimensional micro flow manifolds for miniaturized chemical analysis systems. Journal of Micromechanics and Microengineering, 1994, 4, 246-256.	1.5	79
66	On-chip three-dimensional cell culture in phaseguides improves hepatocyte functions <i>in vitro</i> . Biomicrofluidics, 2015, 9, 034113.	1.2	78
67	An AC electroosmotic micropump for circular chromatographic applications. Lab on A Chip, 2004, 4, 396.	3.1	76
68	Terahertz-time domain spectroscopy for the detection of PCR amplified DNA in aqueous solution. Analyst, The, 2012, 137, 575-579.	1.7	75
69	Miniaturization and chip technology. What can we expect?. Pure and Applied Chemistry, 2001, 73, 1555-1561.	0.9	72
70	Isotachophoresis in Free-Flow Using a Miniaturized Device. Analytical Chemistry, 2006, 78, 3815-3819.	3.2	72
71	Glow discharge in microfluidic chips for visible analog computing. Lab on A Chip, 2002, 2, 113.	3.1	67
72	Synchronized cyclic capillary electrophores—a novel approach to ion separations in solution. Journal of High Resolution Chromatography, 1993, 16, 594-596.	2.0	64

#	Article	IF	CITATIONS
73	Integrated Potentiometric Detector for Use in Chip-Based Flow Cells. Analytical Chemistry, 2000, 72, 2875-2878.	3.2	64
74	Shah Convolution Fourier Transform Detection. Analytical Chemistry, 1999, 71, 2130-2138.	3.2	63
75	On-line monitoring of chromium(iii) using a fast micromachined mixer/reactor and chemiluminescence detection. Analyst, The, 2000, 125, 677-683.	1.7	63
76	Microchip-based synthesis and total analysis systems (μSYNTAS): chemical microprocessing for generation and analysis of compound libraries. Journal of the Chemical Society, Perkin Transactions 1, 2001, , 514-518.	1.3	61
77	On-chip extrusion of lipid vesicles and tubes through microsized apertures. Lab on A Chip, 2006, 6, 488.	3.1	61
78	Picoliter Cell Volume Potentiometric Detector for Open-Tubular Column LC. Journal of Chromatographic Science, 1983, 21, 326-330.	0.7	60
79	Potentiometric detector for fast high-performance open-tubular column liquid chromatography. Analytical Chemistry, 1987, 59, 74-79.	3.2	59
80	Towards an on-chip gas chromatograph: the development of a gas injector and a dc plasma emission detector. Journal of Analytical Atomic Spectrometry, 2002, 17, 794-799.	1.6	58
81	Palm-Sized Device for Point-of-Care Ebola Detection. Analytical Chemistry, 2016, 88, 4803-4807.	3.2	57
82	Rapid separation of fluorescein derivatives using a micromachined capillary eletrophoresis system. Analytica Chimica Acta, 1993, 283, 361-366.	2.6	56
83	Sub-microliter Electrochemiluminescence Detector—A Model for Small Volume Analysis Systems. Analytical Communications, 1997, 34, 393-395.	2.2	54
84	Miniaturised isotachophoresis analysis. Lab on A Chip, 2006, 6, 474.	3.1	54
85	Electrostatic induction of the electric field into free-flow electrophoresis devices. Lab on A Chip, 2006, 6, 710.	3.1	53
86	Modular approach to fabrication of three-dimensional microchannel systems in PDMS—application to sheath flow microchips. Lab on A Chip, 2001, 1, 108-114.	3.1	51
87	Direct optical emission spectroscopy of liquid analytes using an electrolyte as a cathode discharge source (ELCAD) integrated on a micro-fluidic chip. Lab on A Chip, 2005, 5, 711.	3.1	51
88	From chip-in-a-lab to lab-on-a-chip: towards a single handheld electronic system for multiple application-specific lab-on-a-chip (ASLOC). Lab on A Chip, 2014, 14, 2168-2176.	3.1	50
89	Novel Instrumentation for Real-Time Monitoring Using Miniaturized Flow Systems with Integrated Biosensors. Annals of Clinical Biochemistry, 1997, 34, 291-302.	0.8	49
90	Microfluidics as tool to prepare size-tunable PLGA nanoparticles with high curcumin encapsulation for efficient mucus penetration. Beilstein Journal of Nanotechnology, 2019, 10, 2280-2293.	1.5	49

#	Article	IF	CITATIONS
91	Temperature gradient focusing in a PDMS/glass hybrid microfluidic chip. Electrophoresis, 2007, 28, 4606-4611.	1.3	48
92	Acoustofluidic Chemical Waveform Generator and Switch. Analytical Chemistry, 2014, 86, 11803-11810.	3.2	48
93	A miniaturized glow discharge applied for optical emission detection in aqueous analytes. Journal of Micromechanics and Microengineering, 2002, 12, N19-N22.	1.5	47
94	Ultrasensitive PCR and Real-Time Detection from Human Genomic Samples Using a Bidirectional Flow Microreactor. Analytical Chemistry, 2007, 79, 9185-9190.	3.2	46
95	Miniaturization of separation techniques using planar chip technology. Journal of High Resolution Chromatography, 1993, 16, 433-436.	2.0	43
96	A Microfluidic Device with an Integrated Waveguide Beam Splitter for Velocity Measurements of Flowing Particles by Fourier Transformation. Analytical Chemistry, 2003, 75, 4931-4936.	3.2	43
97	Time-resolved Fourier transform infrared spectrometry using a microfabricated continuous flow mixer: application to protein conformation study using the example of ubiquitin. Lab on A Chip, 2003, 3, 82.	3.1	43
98	Plant leaves as templates for soft lithography. RSC Advances, 2016, 6, 22469-22475.	1.7	42
99	Detection of phosphorylated proteins blotted onto membranes using laser ablation inductively coupled plasma mass spectrometry : Part 1: Optimisation of a calibration procedure. Journal of Analytical Atomic Spectrometry, 2007, 22, 1023.	1.6	38
100	Stacked modules for micro flow systems in chemical analysis: concept and studies using an enlarged model. Sensors and Actuators B: Chemical, 1993, 17, 19-25.	4.0	37
101	Sequential DNA hybridisation assays by fast micromixing. Lab on A Chip, 2004, 4, 506.	3.1	36
102	Toward on-chip X-ray analysis. Lab on A Chip, 2005, 5, 382.	3.1	36
103	Velocity Measurement of Particles Flowing in a Microfluidic Chip Using Shah Convolution Fourier Transform Detection. Analytical Chemistry, 2001, 73, 1748-1753.	3.2	35
104	Detection of electrophoretically separated cytochromes P450 by element-labelled monoclonal antibodies via laser ablation inductively coupled plasma mass spectrometry. Analytical and Bioanalytical Chemistry, 2008, 392, 1135-1147.	1.9	35
105	µ-TAS: Miniaturized Total Chemical Analysis Systems. , 1995, , 5-27.		34
106	Planar chip technology for capillary electrophoresis. Fresenius' Journal of Analytical Chemistry, 1994, 348, 567-571.	1.5	33
107	Protein–Carbohydrate Complex Reveals Circulating Metastatic Cells in a Microfluidic Assay. Small, 2013, 9, 2152-2161.	5.2	32
108	Shear-driven pumping and Fourier transform detection for on chip circular chromatography applications. Lab on A Chip, 2005, 5, 764.	3.1	31

#	Article	IF	CITATIONS
109	Injectors for open-tubular column liquid chromatography with 106 theoretical plates at retention times in the minute range. Journal of Chromatography A, 1987, 387, 187-196.	1.8	30
110	A facile in situ microfluidic method for creating multivalent surfaces: toward functional glycomics. Lab on A Chip, 2012, 12, 1500.	3.1	30
111	Micromachined heated chemical reactor for pre-column derivatisation. Journal of Chromatography A, 1998, 815, 265-271.	1.8	28
112	Characterization of electrophoretic sample injection and separation in a gel-filled cyclic planar microstructure. Journal of Separation Science, 1996, 8, 373-381.	1.0	26
113	Shah convolution Fourier transform detection: Multiple-sample injection technique. Electrophoresis, 2001, 22, 222-229.	1.3	25
114	Cell rolling and adhesion on surfaces in shear flow. A model for an antibody-based microfluidic screening system. Microelectronic Engineering, 2012, 98, 668-671.	1.1	24
115	Single Fluorescence Channel-based Multiplex Detection of Avian Influenza Virus by Quantitative PCR with Intercalating Dye. Scientific Reports, 2015, 5, 11479.	1.6	24
116	Differentiation of the human liver progenitor cell line (HepaRG) on a microfluidicâ€based biochip. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 482-494.	1.3	23
117	Plasmonic heating-based portable digital PCR system. Lab on A Chip, 2020, 20, 3560-3568.	3.1	22
118	Cyclic electrophoretic and chromatographic separation methods. Electrophoresis, 2004, 25, 243-252.	1.3	21
119	Galectin-3 coats the membrane of breast cells and makes a signature of tumours. Molecular BioSystems, 2014, 10, 258-265.	2.9	21
120	Direct coupling of a free-flow isotachophoresis (FFITP) device with electrospray ionization mass spectrometry (ESI-MS). Lab on A Chip, 2015, 15, 3495-3502.	3.1	21
121	On-line on-chip post-column derivatisation reactions for pre-ionisation of analytes and cluster analysis in gradient?زز1⁄2-liquid chromatography/electrospray mass spectrometry. Rapid Communications in Mass Spectrometry, 2002, 16, 1377-1388.	0.7	20
122	Lipid Nanotubule Fabrication by Microfluidic Tweezing. Langmuir, 2008, 24, 6754-6758.	1.6	20
123	Miniaturised total chemical-analysis systems (μTAS) that periodically convert chemical into electronic information. Sensors and Actuators B: Chemical, 2018, 273, 1334-1345.	4.0	20
124	Synchronized cyclic capillary electrophoresis using channels arranged in a triangle and low voltages. Fresenius' Journal of Analytical Chemistry, 2001, 371, 195-201.	1.5	19
125	Precise definition of starting time by capillary-based chemical initiation of digital isothermal DNA amplification. Sensors and Actuators B: Chemical, 2019, 288, 678-682.	4.0	18
126	Fully automatic integrated continuous-flow digital PCR device for absolute DNA quantification. Analytica Chimica Acta, 2020, 1125, 50-56.	2.6	18

#	Article	IF	CITATIONS
127	Flow injection analysis and in-line biosensors for bioprocess control: a comparison. Journal of Biotechnology, 1992, 25, 75-80.	1.9	17
128	A Wireless Electrochemiluminescence Detector Applied to Direct and Indirect Detection for Electrophoresis on a Microfabricated Glass Device. Analytical Chemistry, 2001, 73, 5633-5633.	3.2	16
129	Planar Chips Technology for Miniaturization of Separation Systems: A Developing Perspective in Chemical Monitoring. , 2021, , 1-66.		16
130	Indirect fluorescence detection of phenolic compounds by capillary electrophoresis on a glass device. Fresenius' Journal of Analytical Chemistry, 2000, 367, 686-691.	1.5	15
131	µ-Hotplate enhanced optical heating by infrared light for single cell treatment. Lab on A Chip, 2007, 7, 1509.	3.1	15
132	Detection of electrochemiluminescence from floating metal platelets in suspension. Lab on A Chip, 2013, 13, 781.	3.1	15
133	A double plasma gas chromatography injector and detector. Lab on A Chip, 2004, 4, 431.	3.1	14
134	Rapid manufacture of modifiable 2.5-dimensional (2.5D) microstructures for capillary force-driven fluidic velocity control. RSC Advances, 2015, 5, 70737-70742.	1.7	14
135	Shah convolution differentiation Fourier transform for rear analysis in microchip capillary electrophoresis. Journal of Chromatography A, 2001, 924, 177-186.	1.8	13
136	Dry powder injection on chip. Lab on A Chip, 2005, 5, 140.	3.1	13
137	Magnetic response of Magnetospirillum gryphiswaldense observed inside a microfluidic channel. Journal of Magnetism and Magnetic Materials, 2018, 460, 340-353.	1.0	13
138	Transcriptomic and physiological analysis of endocrine disrupting chemicals Impacts on 3D Zebrafish liver cell culture system. Aquatic Toxicology, 2022, 245, 106105.	1.9	13
139	Membrane-free electroextraction using an aqueous two-phase system. RSC Advances, 2014, 4, 49485-49490.	1.7	12
140	Nanoliter-sized overheated reactor. Applied Physics Letters, 2015, 106, 024104.	1.5	12
141	Thermal gradient for fluorometric optimization of droplet PCR in virtual reaction chambers. Mikrochimica Acta, 2017, 184, 3433-3439.	2.5	12
142	Miniaturized chemical analysis systems based on electroosmotic flow. , 0, , .		11
143	Optical Emission Detection of Liquid Analytes Using a Micro-Machined D.C. Glow-Discharge Device at Atmospheric Pressure. , 2001, , 349-350.		11
144	Laser induced disruption of bacterial spores on a microchip. Lab on A Chip, 2005, 5, 374.	3.1	11

#	Article	IF	CITATIONS
145	Construction and analytical application of an on-column photo reactor for improved detection of iron-species as plant metabolites in capillary flow injection and capillary electrophoresis. Journal of Chromatography A, 2006, 1130, 212-218.	1.8	11
146	Onâ€line electroextraction in capillary electrophoresis: Application on the determination of glutamic acid in soy sauces. Electrophoresis, 2019, 40, 322-329.	1.3	11
147	An improved micro enzyme sensor for bioprocess monitoring by flow injection analysis. Sensors and Actuators B: Chemical, 1992, 7, 404-407.	4.0	10
148	Wavelet transform for Shah convolution velocity measurements of single particles and solutes in a microfluidic chip. Lab on A Chip, 2001, 1, 122.	3.1	10
149	Massively parallel production of lipid microstructures. Lab on A Chip, 2008, 8, 1852.	3.1	10
150	Pyrosequencing on a glass surface. Lab on A Chip, 2016, 16, 1063-1071.	3.1	10
151	Continuous Flow Versus Batch Process—A few Examples. , 1998, , 235-240.		9
152	Bilayer microfluidic chip for diffusion-controlled activation of yeast species. Journal of Chromatography A, 2008, 1206, 77-82.	1.8	9
153	Continuous Flow PCR on A Chip. , 1998, , 7-10.		9
154	Ultimate speed and sample volumes in electrophoresis. Biochemical Society Transactions, 1997, 25, 278-281.	1.6	8
155	Characterisation of Shah convolution Fourier transform detection. Analyst, The, 2001, 126, 1640-1644.	1.7	8
156	Concomitant detection of CYP1A1 enzymatic activity and CYP1A1 protein in individual cells of a human urothelial cell line using a bilayer microfluidic device. Analytical and Bioanalytical Chemistry, 2008, 392, 1159-1166.	1.9	8
157	Macroscopic equivalence for microscopic motion in a turbulence driven three-dimensional self-assembly reactor. Journal of Applied Physics, 2018, 123, .	1.1	8
158	Study of melatonin-mediated effects on various hepatic inflammatory responses stimulated by IL-6 in a new HepG2-on-a-chip platform. Biomedical Microdevices, 2018, 20, 54.	1.4	8
159	Microsystems for Analysis in Flowing Solutions. , 1995, , 181-190.		7
160	Channel-free shear driven circular liquid chromatography. Lab on A Chip, 2008, 8, 1784.	3.1	7
161	A Thermodynamic Description of Turbulence as a Source of Stochastic Kinetic Energy for 3D Selfâ€Assembly. Advanced Materials Interfaces, 2020, 7, 1900963.	1.9	7
162	Implementing chemical sensors in industry: novel approaches. Sensors and Actuators B: Chemical, 1991, 5, 75-78.	4.0	6

#	Article	IF	CITATIONS
163	Fast spore breaking by superheating. Lab on A Chip, 2013, 13, 1695.	3.1	6
164	Biocompatibility assay of cellular behavior inside a leaf-inspired biomimetic microdevice at the single-cell level. RSC Advances, 2017, 7, 32710-32720.	1.7	6
165	Continuous Sample Preparation Using Free-flow electrophoresis On A Silicon Microstructure. , 0, , .		5
166	Parallel capillaries for high throughput in electrophoretic separations and electroosmotic drug discovery systems. , 0, , .		5
167	Guiding DC glow discharge in microchannels. Lab on A Chip, 2003, 3, 137.	3.1	5
168	Whole genome amplification on poly(dimethylsiloxane) microchip array. Analytical Biochemistry, 2008, 372, 128-130.	1.1	5
169	Predicting the future. Lab on A Chip, 2008, 8, 13-14.	3.1	5
170	Van de Graaff generator for capillary electrophoresis. Journal of Chromatography A, 2017, 1517, 195-202.	1.8	5
171	Miniaturized Continuous-Flow Digital PCR for Clinical-Level Serum Sample Based on the 3D Microfluidics and CMOS Imaging Device. Sensors, 2020, 20, 2492.	2.1	5
172	Femtoliter Cell Volume Potentiometric Detector For Open-Tubular Column Liquid Chromatography. Journal of Chromatography Library, 1985, , 297-307.	0.1	5
173	Targeting extracellular lectins of <i>Pseudomonas aeruginosa</i> with glycomimetic liposomes. Journal of Materials Chemistry B, 2022, 10, 537-548.	2.9	5
174	Microfluidic Roadmap for Translational Nanotheranostics. Small Methods, 2022, 6, e2101217.	4.6	5
175	Position control and extra-column effects of a microelectrode detector in open-tubular column liquid chromatography. Mikrochimica Acta, 1986, 88, 147-158.	2.5	4
176	Integrated Capillary Electrophoresis for Chemical Analysis. Sensors Update, 1998, 3, 209-238.	0.5	4
177	Can microTAS be alternatives for sensors?. , 0, , .		4
178	Microfluidic imaging: A novel concept for pixelation of chemical and biological samples. Sensors and Actuators B: Chemical, 2009, 137, 781-788.	4.0	4
179	Microfluidic Superheating for Peptide Sequence Elucidation. Analytical Chemistry, 2015, 87, 5997-6003.	3.2	4
180	Selective and vertical microfabrication of lipid tubule arrays on glass substrates using template-guided gentle hydration. Lab on A Chip, 2016, 16, 4732-4741.	3.1	3

#	Article	IF	CITATIONS
181	Storage and controlled release of fragrances maintaining a constant ratio of volatile compounds. Analytical Methods, 2017, 9, 6073-6082.	1.3	3
182	Development of a Micro System for Circular Chromatography Using Wavelet Transform Detection. , 2001, , 541-542.		3
183	On-Chip Post-Column Derivatisation Reactions in Capillary Liquid Chromatography — Mass Spectrometry. , 2001, , 222-223.		3
184	Novel Injection Methods for Miniaturised Gas Chromatography. , 2001, , 655-657.		3
185	Chip technology for micro-separation. , 1999, , 129-177.		2
186	The Incredibly Shrinking Laboratory Reactions, Separations and Detections. Journal of the Association for Laboratory Automation, 2000, 5, 40-45.	2.8	2
187	Superheated droplets for protein thermal stability analyses of GFP, BSA and Taq-polymerase. RSC Advances, 2016, 6, 42076-42080.	1.7	2
188	Long-term observation of Magnetospirillum gryphiswaldense in a microfluidic channel. Archives of Microbiology, 2019, 201, 1427-1433.	1.0	2
189	A digital PCR system based on the thermal cycled chip with multi helix winding capillary. Scientific Reports, 2020, 10, 17824.	1.6	2
190	Towards Evaporation-Driven HPLC on a Chip: An Alternative Transport Process for Micro Analysis Systems. , 2001, , 375-376.		2
191	Foreword. Journal of Chromatography A, 2008, 1206, 1.	1.8	1
192	The Human Document Project and Challenges. Challenges, 2010, 1, 3-4.	0.9	1
193	Miniaturization of analytical techniques—lab on a chip. Journal of Pharmacy and Pharmacology, 2011, 50, 42-42.	1.2	1
194	Lab on a Chip – past, present, and future. Lab on A Chip, 2021, 21, 1197-1198.	3.1	1
195	Characterization of electrophoretic sample injection and separation in a gel-filled cyclic planar microstructure. , 1996, 8, 373.		1
196	Trends in Microfluidic Devices for Analytical Chemistry. , 2003, , 101-134.		1
197	Shah Convolution Fourier Transform Detection. , 2000, , 603-606.		1
198	Scent Whisper. , 2006, , .		1

12

#	Article	IF	CITATIONS
199	Using Microfluidic Systems as Analog Devices for Solving Computational Problems. , 2001, , 37-39.		1
200	Why use a Delicate Biosensor for Monitoring? Alternative Routes by Miniaturizing and Speeding up the Classic Analytical Techniques. , 1992, , 472-477.		0
201	People: Michael Widmer (1933–1997). Analytical Chemistry, 1997, 69, 460A-460A.	3.2	0
202	A Miniaturized Glow Discharge Optical Emission Detector for Aqueous Analytes. , 2002, , 266-268.		0
203	Miniaturizing conventional analytical methods: electrophoresis, chemical reactors and detection. , 0, , .		0
204	Continuous-Flow Focusing and Separations on Chip. , 2006, , .		0
205	Trends and Perspectives. , 2012, , 229-239.		0
206	Editorial. Lab on A Chip, 2012, 12, 417.	3.1	0
207	Duplex-imprinted nano well arrays for promising nanoparticle assembly. Nanotechnology, 2018, 29, 085302.	1.3	0
208	User-Friendly Microfabrication Method for Complex Topological Structure and Three-Dimensional Microchannel with the Application Prospect in Polymerase Chain Reaction (PCR). Analytical Chemistry, 2021, 93, 1523-1528.	3.2	0
209	Injection Modes for Evaporation Driven Continuous Liquid Flow. , 2002, , 166-168.		0
210	Free Flow Electrophoresis Device Showing Sub-second Isoelectric Focusing for a Peptide. , 2002, , 539-541.		0
211	SHAH Convolution Fourier Transform Detection of Particle Velocities by Using an Integrated 1×128 Planar Waveguide Beamsplitter. , 2002, , 636-638.		0
212	DNA Extraction from Bacterial Cells by Reverse Electroporation and Splitt Methods on A Microfabricated Device. , 2002, , 817-819.		0
213	Protein Dynamics Study Using a Continuous-Flow Microfluidic Mixer. , 2002, , 518-520.		0
214	Electric Field Assisted Extraction and Focusing of Fingerprint Residues by Means of A Microfluidic Device. , 2002, , 865-867.		0
215	Measurements of Creatinine in Physiological Samples by Means of Enzymatic Biosensors: Comparison of the Microcalorimetric and Amperometric Approaches. , 1994, , 138-140.		0