Giovanna Visioli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2256568/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phyto-Beneficial Traits of Rhizosphere Bacteria: In Vitro Exploration of Plant Growth Promoting and Phytopathogen Biocontrol Ability of Selected Strains Isolated from Harsh Environments. Plants, 2022, 11, 230.	3.5	12
2	Smart agriculture for food quality: facing climate change in the 21st century. Critical Reviews in Food Science and Nutrition, 2021, 61, 971-981.	10.3	53
3	Heavy metals modulate <scp>DNA</scp> compaction and methylation at <scp>CpG</scp> sites in the metal hyperaccumulator <i>Arabidopsis halleri</i> . Environmental and Molecular Mutagenesis, 2021, 62, 133-142.	2.2	15
4	Phytoextraction efficiency of Pteris vittata grown on a naturally As-rich soil and characterization of As-resistant rhizosphere bacteria. Scientific Reports, 2021, 11, 6794.	3.3	20
5	Enhancement of Zn tolerance and accumulation in plants mediated by the expression of Saccharomyces cerevisiae vacuolar transporter ZRC1. Planta, 2021, 253, 117.	3.2	16
6	Gluten aggregation properties as a tool for durum wheat quality assessment: A chemometric approach. LWT - Food Science and Technology, 2021, 142, 111048.	5.2	6
7	Improvement of Soil Microbial Diversity through Sustainable Agricultural Practices and Its Evaluation by -Omics Approaches: A Perspective for the Environment, Food Quality and Human Safety. Microorganisms, 2021, 9, 1400.	3.6	58
8	Effect of Nitrogen Fertilization and Fungicide Application at Heading on the Gluten Protein Composition and Rheological Quality of Wheat. Agronomy, 2021, 11, 1687.	3.0	4
9	Traceability of Sicilian Durum Wheat Landraces and Historical Varieties by High Molecular Weight Glutenins Footprint. Agronomy, 2021, 11, 143.	3.0	10
10	Comparing Soil vs. Foliar Nitrogen Supply of the Whole Fertilizer Dose in Common Wheat. Agronomy, 2021, 11, 2138.	3.0	12
11	Overexpression of ZNT1 and NRAMP4 from the Ni Hyperaccumulator Noccaea caerulescens Population Monte Prinzera in Arabidopsis thaliana Perturbs Fe, Mn, and Ni Accumulation. International Journal of Molecular Sciences, 2021, 22, 11896.	4.1	8
12	Biostimulants applied to maize seeds modulate the enzymatic activity and metaproteome of the rhizosphere. Applied Soil Ecology, 2020, 148, 103480.	4.3	25
13	A Comparative Study of Organic and Conventional Management on the Rhizosphere Microbiome, Growth and Grain Quality Traits of Tritordeum. Agronomy, 2020, 10, 1717.	3.0	17
14	Characterization of Celiac Disease-Related Epitopes and Gluten Fractions, and Identification of Associated Loci in Durum Wheat. Agronomy, 2020, 10, 1231.	3.0	6
15	Influence of environmental and genetic factors on content of toxic and immunogenic wheat gluten peptides. European Journal of Agronomy, 2020, 118, 126091.	4.1	10
16	Effects of Seed-Applied Biofertilizers on Rhizosphere Biodiversity and Growth of Common Wheat (Triticum aestivum L.) in the Field. Frontiers in Plant Science, 2020, 11, 72.	3.6	83
17	Proteins and Metabolites as Indicators of Flours Quality and Nutritional Properties of Two Durum Wheat Varieties Grown in Different Italian Locations. Foods, 2020, 9, 315.	4.3	13
18	Is Site-Specific Pasta a Prospective Asset for a Short Supply Chain?. Foods, 2020, 9, 477.	4.3	2

GIOVANNA VISIOLI

#	Article	IF	CITATIONS
19	Impact of late-season N fertilisation strategies on the gluten content and composition of high protein wheat grown under humid Mediterranean conditions. Journal of Cereal Science, 2020, 94, 102995.	3.7	14
20	PGPB Colonizing Three-Year Biochar-Amended Soil: Towards Biochar-Mediated Biofertilization. Journal of Soil Science and Plant Nutrition, 2019, 19, 841-850.	3.4	41
21	Heavy Metal Pollutions: State of the Art and Innovation in Phytoremediation. International Journal of Molecular Sciences, 2019, 20, 3412.	4.1	261
22	Effect of Soil Tillage and Crop Sequence on Grain Yield and Quality of Durum Wheat in Mediterranean Areas. Agronomy, 2019, 9, 488.	3.0	27
23	Modeling of Soil Functions for Assessing Soil Quality: Soil Biodiversity and Habitat Provisioning. Frontiers in Environmental Science, 2019, 7, .	3.3	37
24	Technological Quality and Nutritional Value of Two Durum Wheat Varieties Depend on Both Genetic and Environmental Factors. Journal of Agricultural and Food Chemistry, 2019, 67, 2384-2395.	5.2	29
25	Above and belowground biodiversity in adjacent and distinct serpentine soils. Applied Soil Ecology, 2019, 133, 98-103.	4.3	14
26	Epigenetic modifications preserve the hyperaccumulator <i>Noccaea caerulescens</i> from Ni genoâ€ŧoxicity. Environmental and Molecular Mutagenesis, 2018, 59, 464-475.	2.2	25
27	Safety assessment of gasification biochars using Folsomia candida (Collembola) ecotoxicological bioassays. Environmental Science and Pollution Research, 2018, 25, 6668-6679.	5.3	20
28	Optimising durum wheat cultivation in North Italy: understanding the effects of site-specific fertilization on yield and protein content. Precision Agriculture, 2018, 19, 257-277.	6.0	28
29	Variations in yield and gluten proteins in durum wheat varieties under lateâ€season foliar <i>versus</i> soil application of nitrogen fertilizer in a northern Mediterranean environment. Journal of the Science of Food and Agriculture, 2018, 98, 2360-2369.	3.5	37
30	Effects of Field Inoculation with VAM and Bacteria Consortia on Root Growth and Nutrients Uptake in Common Wheat. Sustainability, 2018, 10, 3286.	3.2	30
31	Gene-ecology of durum wheat HMW glutenin reflects their diffusion from the center of origin. Scientific Reports, 2018, 8, 16929.	3.3	11
32	A novel β-propeller phytase from the dioxin-degrading bacterium Sphingomonas wittichii RW-1. Applied Microbiology and Biotechnology, 2018, 102, 8351-8358.	3.6	12
33	16S rDNA Profiling to Reveal the Influence of Seed-Applied Biostimulants on the Rhizosphere of Young Maize Plants. Molecules, 2018, 23, 1461.	3.8	49
34	Assessment of Benefits of Conservation Agriculture on Soil Functions in Arable Production Systems in Europe. Sustainability, 2018, 10, 794.	3.2	32
35	A metaproteomic approach dissecting major bacterial functions in the rhizosphere of plants living in serpentine soil. Analytical and Bioanalytical Chemistry, 2017, 409, 2327-2339.	3.7	46
36	The <i><scp>MTP</scp>1</i> promoters from <i>Arabidopsis halleri</i> reveal <i>cis</i> â€regulating elements for the evolution of metal tolerance. New Phytologist, 2017, 214, 1614-1630.	7.3	26

GIOVANNA VISIOLI

#	Article	IF	CITATIONS
37	Increased root growth and nitrogen accumulation in common wheat following PGPR inoculation: Assessment of plant-microbe interactions by ESEM. Agriculture, Ecosystems and Environment, 2017, 247, 396-408.	5.3	70
38	Nitrogen fertilisation of durum wheat: a case study in Mediterranean area during transition to conservation agriculture. Italian Journal of Agronomy, 2016, 11, 12-23.	1.0	23
39	High Nature Value Farmland: Assessment of Soil Organic Carbon in Europe. Frontiers in Environmental Science, 2016, 4, .	3.3	24
40	Proteomics of Durum Wheat Grain during Transition to Conservation Agriculture. PLoS ONE, 2016, 11, e0156007.	2.5	17
41	Gel-Based and Gel-Free Analytical Methods for the Detection of HMW-GS and LMW-GS in Wheat Flour. Food Analytical Methods, 2016, 9, 469-476.	2.6	19
42	Assessing biochar ecotoxicology for soil amendment by root phytotoxicity bioassays. Environmental Monitoring and Assessment, 2016, 188, 166.	2.7	47
43	Combined endophytic inoculants enhance nickel phytoextraction from serpentine soil in the hyperaccumulator Noccaea caerulescens. Frontiers in Plant Science, 2015, 6, 638.	3.6	53
44	ESEM-EDS: In vivo characterization of the Ni hyperaccumulator Noccaea caerulescens. Micron, 2015, 75, 18-26.	2.2	9
45	Germination and Root Elongation Bioassays in Six Different Plant Species for Testing Ni Contamination in Soil. Bulletin of Environmental Contamination and Toxicology, 2014, 92, 490-496.	2.7	39
46	Culturable endophytic bacteria enhance Ni translocation in the hyperaccumulator Noccaea caerulescens. Chemosphere, 2014, 117, 538-544.	8.2	68
47	Noccaea caerulescens populations adapted to grow in metalliferous and non-metalliferous soils: Ni tolerance, accumulation and expression analysis of genes involved in metal homeostasis. Environmental and Experimental Botany, 2014, 105, 10-17.	4.2	25
48	The bacterial rhizobiome of hyperaccumulators: future perspectives based on omics analysis and advanced microscopy. Frontiers in Plant Science, 2014, 5, 752.	3.6	61
49	Metal toxicity and biodiversity in serpentine soils: Application of bioassay tests and microarthropod index. Chemosphere, 2013, 90, 1267-1273.	8.2	34
50	The proteomics of heavy metal hyperaccumulation by plants. Journal of Proteomics, 2013, 79, 133-145.	2.4	60
51	Trade-off between genetic variation and ecological adaptation of metallicolous and non-metallicolous Noccaea and Thlaspi species. Environmental and Experimental Botany, 2013, 96, 1-10.	4.2	6
52	Proteomics of Plant Hyperaccumulators. , 2012, , 165-186.		2
53	Correlation between phenotype and proteome in the Ni hyperaccumulator Noccaea caerulescens subsp. caerulescens. Environmental and Experimental Botany, 2012, 77, 156-164.	4.2	38
54	Correlating SNP Genotype with the Phenotypic Response to Exposure to Cadmium in <i>Populus</i> spp Environmental Science & Technology, 2011, 45, 4497-4505.	10.0	20

GIOVANNA VISIOLI

#	Article	IF	CITATIONS
55	Metal tolerance and hyperaccumulation: Costs and trade-offs between traits and environment. Environmental and Experimental Botany, 2010, 68, 1-13.	4.2	438
56	Comparison of Protein Variations in <i>Thlaspi Caerulescens</i> Populations from Metalliferous and Non-Metalliferous Soils. International Journal of Phytoremediation, 2010, 12, 805-819.	3.1	14
57	Two-Dimensional Liquid Chromatography Technique Coupled with Mass Spectrometry Analysis to Compare the Proteomic Response to Cadmium Stress in Plants. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-10.	3.0	29
58	Evaluation of DNA extraction procedures for traceability of various tomato products. Food Control, 2010, 21, 143-149.	5.5	44
59	Yield and amplificability of different DNA extraction procedures for traceability in the dairy food chain. Food Control, 2010, 21, 663-668.	5.5	58
60	Integration of XAS techniques and genetic methodologies to explore Cs-tolerance in Arabidopsis. Biochimie, 2009, 91, 180-191.	2.6	9
61	Proteomic analysis in the lichen Physcia adscendens exposed to cadmium stress. Environmental Pollution, 2008, 156, 1121-1127.	7.5	16
62	G1-1 and LeG1-1/LeG1-2 genes are involved in meristem activation during breakage of dormancy and early germination in potato tubers and tomato seeds. Plant Science, 2007, 173, 533-541.	3.6	2
63	A 2-D liquid-phase chromatography for proteomic analysis in plant tissuesâ~†. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2006, 833, 91-100.	2.3	37
64	EXPRESSION ANALYSIS OF G1-1, A GENE INVOLVED IN TUBER SPROUTING, BY MEANS OF QUANTITATIVE RT-PCR AND IN SITU HYBRIDISATION. Acta Horticulturae, 2005, , 37-44.	0.2	0
65	Analysis of protein profiles of genetically modified potato tubers by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry, 2003, 17, 479-483.	1.5	26
66	Silencing of G1-1 and A2-1 genes. Effects on general plant phenotype and on tuber dormancy inSolanum tuberosum L Potato Research, 2000, 43, 313-323.	2.7	11
67	In vitro and in silico analysis of two genes (A2-1 and G1-1) differentially regulated during dormancy and sprouting in potato tubers. Potato Research, 2000, 43, 325-333.	2.7	6
68	Differential display-mediated isolation of a genomic sequence for a putative mitochondrial LMW HSP specifically expressed in condition of induced thermotolerance in Arabidopsis thaliana (L.) heynh. Plant Molecular Biology, 1997, 34, 517-527.	3.9	40
69	Comparison of Bacterial and Archaeal Microbiome in Two Bioreactors Fed with Cattle Sewage and Corn Biomass. Waste and Biomass Valorization, 0, , .	3.4	1