
Mikihisa Umehara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2256333/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Shoot has important roles in strigolactone production of rice roots under sulfur deficiency. Plant Signaling and Behavior, 2021, 16, 1880738.	2.4	4
2	Agriculture, biology, and environment: Twenty first century challenges and opportunities. Agronomy Journal, 2021, 113, 671-676.	1.8	4
3	Strigolactone signaling inhibition increases adventitious shoot formation on internodal segments of ipecac. Planta, 2021, 253, 123.	3.2	8
4	Hydroxyl carlactone derivatives are predominant strigolactones in <i>Arabidopsis</i> . Plant Direct, 2020, 4, e00219.	1.9	60
5	Strigolactones Decrease Leaf Angle in Response to Nutrient Deficiencies in Rice. Frontiers in Plant Science, 2020, 11, 135.	3.6	21
6	Endogenous auxin determines the pattern of adventitious shoot formation on internodal segments of ipecac. Planta, 2020, 251, 73.	3.2	11
7	Nanometer accuracy statistical interferometric technique in monitoring the short-term effects of exogenous plant hormones, auxin and gibberellic acid, on rice plants. Plant Biotechnology, 2020, 37, 261-271.	1.0	2
8	Effects of Gibberellin and Abscisic Acid on Asexual Reproduction from Graptopetalum paraguayense Leaves. Journal of Plant Growth Regulation, 2020, 39, 1373-1380.	5.1	2
9	Effects of Strigolactones on Grain Yield and Seed Development in Rice. Journal of Plant Growth Regulation, 2019, 38, 753-764.	5.1	15
10	Strigolactone perception and deactivation by a hydrolase receptor DWARF14. Nature Communications, 2019, 10, 191.	12.8	198
11	Upregulation of <i><scp>DWARF</scp>27</i> is associated with increased strigolactone levels under sulfur deficiency in rice. Plant Direct, 2018, 2, e00050.	1.9	41
12	Quantification of Endogenous Auxin and Cytokinin During Internode Culture of Ipecac. Journal of Visualized Experiments, 2018, , .	0.3	3
13	Low Infection of Phelipanche aegyptiaca in Micro-Tom Mutants Deficient in CAROTENOID CLEAVAGE DIOXYGENASE 8. International Journal of Molecular Sciences, 2018, 19, 2645.	4.1	10
14	Regulation of Strigolactone Biosynthesis by Gibberellin Signaling. Plant Physiology, 2017, 174, 1250-1259.	4.8	138
15	Dynamics of Endogenous Indole-3-acetic Acid and Cytokinins During Adventitious Shoot Formation in Ipecac. Journal of Plant Growth Regulation, 2017, 36, 805-813.	5.1	10
16	Possible Roles of Strigolactones during Leaf Senescence. Plants, 2015, 4, 664-677.	3.5	63
17	Structural Requirements of Strigolactones for Shoot Branching Inhibition in Rice and Arabidopsis. Plant and Cell Physiology, 2015, 56, 1059-1072.	3.1	91
18	Carlactone is an endogenous biosynthetic precursor for strigolactones. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1640-1645.	7.1	299

MIKIHISA UMEHARA

#	Article	IF	CITATIONS
19	Strigolactone signaling regulates rice leaf senescence in response to a phosphate deficiency. Planta, 2014, 240, 399-408.	3.2	171
20	In vitro evaluation method for screening of candidate prebiotic foods. Food Chemistry, 2014, 152, 251-260.	8.2	34
21	Effects of strigolactone-biosynthesis inhibitor TIS108 on <i>Arabidopsis</i> . Plant Signaling and Behavior, 2013, 8, e24193.	2.4	33
22	Tebuconazole derivatives are potent inhibitors of strigolactone biosynthesis. Journal of Pesticide Sciences, 2013, 38, 147-151.	1.4	12
23	The <scp><scp>D3</scp> F</scp> â€box protein is a key component in host strigolactone responses essential for arbuscular mycorrhizal symbiosis. New Phytologist, 2012, 196, 1208-1216.	7.3	134
24	Strigolactone, a key regulator of nutrient allocation in plants. Plant Biotechnology, 2011, 28, 429-437.	1.0	43
25	Effects of Triazole Derivatives on Strigolactone Levels and Growth Retardation in Rice. PLoS ONE, 2011, 6, e21723.	2.5	55
26	Historical and contemporary gene dispersal in wild carrot (Daucus carota ssp. carota) populations. Annals of Botany, 2010, 106, 285-296.	2.9	41
27	A New Lead Chemical for Strigolactone Biosynthesis Inhibitors. Plant and Cell Physiology, 2010, 51, 1143-1150.	3.1	51
28	Contribution of Strigolactones to the Inhibition of Tiller Bud Outgrowth under Phosphate Deficiency in Rice. Plant and Cell Physiology, 2010, 51, 1118-1126.	3.1	303
29	FINE CULM1 (FC1) Works Downstream of Strigolactones to Inhibit the Outgrowth of Axillary Buds in Rice. Plant and Cell Physiology, 2010, 51, 1127-1135.	3.1	276
30	d14, a Strigolactone-Insensitive Mutant of Rice, Shows an Accelerated Outgrowth of Tillers. Plant and Cell Physiology, 2009, 50, 1416-1424.	3.1	560
31	æ ç ‰©ã®æžå^†ã•ã,ŒæŠ'å^¶ãƒ›ãƒ«ãƒ¢ãƒ³ã®ç™ºè¦‹. Kagaku To Seibutsu, 2009, 47, 678-683.	0.0	0
32	Inhibition of shoot branching by new terpenoid plant hormones. Nature, 2008, 455, 195-200.	27.8	1,765
33	Identification of a factor that complementarily inhibits somatic embryogenesis with vanillyl benzyl ether in Japanese larch. In Vitro Cellular and Developmental Biology - Plant, 2007, 43, 203-208.	2.1	7
34	Embryogenesis-related genes; Its expression and roles during somatic and zygotic embryogenesis in carrot and Arabidopsis. Plant Biotechnology, 2006, 23, 153-161.	1.0	67
35	Interspecific hybrids betweenAllium fistulosumandAllium schoenoprasumreveal carotene-rich phenotype. Euphytica, 2006, 148, 295-301.	1.2	21
36	Production of interspecific hybrids between Allium fistulosum L. and A. macrostemon Bunge through ovary culture. Plant Cell, Tissue and Organ Culture, 2006, 87, 297-304.	2.3	7

Mikihisa Umehara

#	Article	IF	CITATIONS
37	Development of the embryo proper and the suspensor during plant embryogenesis. Plant Biotechnology, 2005, 22, 253-260.	1.0	9
38	Identification of a Novel factor, Vanillyl Benzyl Ether, Which Inhibits Somatic Embryogenesis of Japanese Larch (Larix leptolepis Gordon). Plant and Cell Physiology, 2005, 46, 445-453.	3.1	18
39	Two stimulatory effects of the peptidyl growth factor phytosulfokine during somatic embryogenesis in Japanese larch (Larix leptolepis Gordon). Plant Science, 2005, 169, 901-907.	3.6	14
40	Evaluation of gene flow and its environmental effects in the field. Plant Biotechnology, 2005, 22, 497-504.	1.0	15
41	An in vitro Culture System used to Investigate Possible Interactions between the Embryo Proper and the Suspensor in Embryogenesis in Japanese Larch (Larix leptolepis GORDON). Plant Biotechnology, 2004, 21, 169-171.	1.0	6
42	Inhibitory Factor(s) of Somatic Embryogenesis Regulated Suspensor Differentiation in Suspension Culture of Japanese Larch (Larix leptolepis GORDON). Plant Biotechnology, 2004, 21, 87-94.	1.0	13
43	Stress-induced somatic embryogenesis in vegetative tissues of Arabidopsis thaliana. Plant Journal, 2003, 34, 107-114.	5.7	181