Suk-Whan Hong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2256259/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<scp>MYBD</scp> employed by <scp>HY</scp> 5 increases anthocyanin accumulation via repression of <i><scp>MYBL</scp>2</i> in Arabidopsis. Plant Journal, 2015, 84, 1192-1205.	5.7	112
2	High accumulation of anthocyanins via the ectopic expression of AtDFR confers significant salt stress tolerance in Brassica napus L. Plant Cell Reports, 2017, 36, 1215-1224.	5.6	78
3	Characterization of Arabidopsis thaliana FLAVONOL SYNTHASE 1 (FLS1) -overexpression plants in response to abiotic stress. Plant Physiology and Biochemistry, 2016, 103, 133-142.	5.8	46
4	Characterization of <i>Brassica napus Flavonol Synthase</i> Involved in Flavonol Biosynthesis in <i>Brassica napus</i> L. Journal of Agricultural and Food Chemistry, 2015, 63, 7819-7829.	5.2	33
5	Overexpression of the HDA15 Gene Confers Resistance to Salt Stress by the Induction of NCED3, an ABA Biosynthesis Enzyme. Frontiers in Plant Science, 2021, 12, 640443.	3.6	29
6	Drastic anthocyanin increase in response to PAP1 overexpression in fls1 knockout mutant confers enhanced osmotic stress tolerance in Arabidopsis thaliana. Plant Cell Reports, 2016, 35, 2369-2379.	5.6	28
7	Evaluation of the plant growth-promoting activity of Pseudomonas nitroreducens in Arabidopsis thaliana and Lactuca sativa. Plant Cell Reports, 2018, 37, 873-885.	5.6	27
8	Systematic deletion of the ER lectin chaperone genes reveals their roles in vegetative growth and male gametophyte development in Arabidopsis. Plant Journal, 2017, 89, 972-983.	5.7	20
9	Paenibacillus pabuli strain P7S promotes plant growth and induces anthocyanin accumulation in Arabidopsis thaliana. Plant Physiology and Biochemistry, 2018, 129, 264-272.	5.8	18
10	Enhanced anthocyanin accumulation confers increased growth performance in plants under low nitrate and high salt stress conditions owing to active modulation of nitrate metabolism. Journal of Plant Physiology, 2018, 231, 41-48.	3.5	17
11	Dual role of SND1 facilitates efficient communication between abiotic stress signalling and normal growth in Arabidopsis. Scientific Reports, 2018, 8, 10114.	3.3	17
12	AtMyb56 Regulates Anthocyanin Levels via the Modulation of Expression in Response to Sucrose in. Molecules and Cells, 2018, 41, 351-361.	2.6	16
13	Arabidopsis UDP-glycosyltransferase 78D1-overexpressing plants accumulate higher levels of kaempferol 3-O-β-d-glucopyranoside than wild-type plants. Applied Biological Chemistry, 2017, 60, 647-652.	1.9	14
14	<i>NITROGEN RESPONSE DEFICIENCY 1</i> â€mediated <i>CHL1</i> induction contributes to optimized growth performance during altered nitrate availability in <i>Arabidopsis</i> . Plant Journal, 2020, 104, 1382-1398.	5.7	13
15	Evaluation of a Rapid Method for Screening Heat Stress Tolerance Using Three Korean Wheat (<i>Triticum aestivum</i> L.) Cultivars. Journal of Agricultural and Food Chemistry, 2017, 65, 5589-5597.	5.2	12
16	AtMybL-O modulates abscisic acid biosynthesis to optimize plant growth and ABA signaling in response to drought stress. Applied Biological Chemistry, 2018, 61, 473-477.	1.9	10
17	Deficiency of AtGFAT1 activity impairs growth, pollen germination and tolerance to tunicamycin in Arabidopsis. Journal of Experimental Botany, 2019, 70, 1775-1787.	4.8	10
18	Growth Performance Can Be Increased Under High Nitrate and High Salt Stress Through Enhanced Nitrate Reductase Activity in Arabidopsis Anthocyanin Over-Producing Mutant Plants. Frontiers in Plant Science, 2021, 12, 644455.	3.6	10

#	Article	IF	CITATIONS
19	The Loss of Function of the NODULE INCEPTION-Like PROTEIN 7 Enhances Salt Stress Tolerance in Arabidopsis Seedlings. Frontiers in Plant Science, 2021, 12, 743832.	3.6	3
20	Molecular marker-assisted detection of rice weevil in stored rice. International Journal of Pest Management, 2006, 52, 325-331.	1.8	2