Neal R Swerdlow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2256177/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Auditory discrimination and frequency modulation learning in schizophrenia patients: amphetamine within-subject dose response and time course. Psychological Medicine, 2023, 53, 140-148.	4.5	1
2	Detecting the Inverted-U in fMRI Studies of Schizophrenia: A Comparison of Three Analysis Methods. Journal of the International Neuropsychological Society, 2022, 28, 258-269.	1.8	7
3	The viability of the frequency following response characteristics for use as biomarkers of cognitive therapeutics in schizophrenia. Schizophrenia Research, 2022, 243, 372-382.	2.0	7
4	Click-evoked auditory brainstem responses (ABRs) are intact in schizophrenia and not sensitive to cognitive training. Biomarkers in Neuropsychiatry, 2022, 6, 100046.	1.0	2
5	EEG reveals that dextroamphetamine improves cognitive control through multiple processes in healthy participants. Neuropsychopharmacology, 2022, 47, 1029-1036.	5.4	6
6	Amphetamine alters an EEG marker of reward processing in humans and mice. Psychopharmacology, 2022, 239, 923-933.	3.1	13
7	Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature, 2022, 604, 502-508.	27.8	929
8	Hierarchical Pathways from Sensory Processing to Cognitive, Clinical, and Functional Impairments in Schizophrenia. Schizophrenia Bulletin, 2021, 47, 373-385.	4.3	46
9	Unique contributions of sensory discrimination and gamma synchronization deficits to cognitive, clinical, and psychosocial functional impairments in schizophrenia. Schizophrenia Research, 2021, 228, 280-287.	2.0	25
10	Neural network dynamics underlying gamma synchronization deficits in schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2021, 107, 110224.	4.8	17
11	Anticholinergic Medication Burden–Associated Cognitive Impairment in Schizophrenia. American Journal of Psychiatry, 2021, 178, 838-847.	7.2	80
12	Electrophysiological biomarkers of behavioral dimensions from cross-species paradigms. Translational Psychiatry, 2021, 11, 482.	4.8	20
13	Central auditory processing deficits in schizophrenia: Effects of auditory-based cognitive training. Schizophrenia Research, 2021, 236, 135-141.	2.0	9
14	Using Biomarkers to Predict Memantine Effects in Alzheimer's Disease: A Proposal and Proof-Of-Concept Demonstration. Journal of Alzheimer's Disease, 2021, 84, 1431-1438.	2.6	3
15	Evaluation of the frequency following response as a predictive biomarker of response to cognitive training in schizophrenia. Psychiatry Research, 2021, 305, 114239.	3.3	4
16	Selection criteria for neurophysiologic biomarkers to accelerate the pace of CNS therapeutic development. Neuropsychopharmacology, 2020, 45, 237-238.	5.4	17
17	Oscillatory biomarkers of early auditory information processing predict cognitive gains following targeted cognitive training in schizophrenia patients. Schizophrenia Research, 2020, 215, 97-104.	2.0	13
18	Commentary: Lessons Learned From Animal Models for Schizophrenia. American Journal of Geriatric Psychiatry, 2020, 28, 20-22.	1.2	1

#	Article	IF	CITATIONS
19	Memantine effects on auditory discrimination and training in schizophrenia patients. Neuropsychopharmacology, 2020, 45, 2180-2188.	5.4	20
20	Gamma oscillations predict pro-cognitive and clinical response to auditory-based cognitive training in schizophrenia. Translational Psychiatry, 2020, 10, 405.	4.8	35
21	Heritability of acoustic startle magnitude and latency from the consortium on the genetics of schizophrenia. Schizophrenia Research, 2020, 224, 33-39.	2.0	3
22	A distributed frontotemporal network underlies gamma-band synchronization impairments in schizophrenia patients. Neuropsychopharmacology, 2020, 45, 2198-2206.	5.4	29
23	The effects of age and sex on cognitive impairment in schizophrenia: Findings from the Consortium on the Genetics of Schizophrenia (COGS) study. PLoS ONE, 2020, 15, e0232855.	2.5	21
24	Abnormal Effective Connectivity Underlying Auditory Mismatch Negativity Impairments in Schizophrenia. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2020, 5, 1028-1039.	1.5	11
25	Memantine Effects on Electroencephalographic Measures of Putative Excitatory/Inhibitory Balance in Schizophrenia. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2020, 5, 562-568.	1.5	57
26	Amphetamine improves rat 5-choice continuous performance test (5C-CPT) irrespective of concurrent low-dose haloperidol treatment. Psychopharmacology, 2020, 237, 1959-1972.	3.1	14
27	Auditory-Based Cognitive Training Drives Short- and Long-Term Plasticity in Cortical Networks in Schizophrenia Bulletin Open, 2020, 1, .	1.7	5
28	Title is missing!. , 2020, 15, e0232855.		0
29	Title is missing!. , 2020, 15, e0232855.		0
30	Title is missing!. , 2020, 15, e0232855.		0
31	Title is missing!. , 2020, 15, e0232855.		Ο
32	Genome-wide Association of Endophenotypes for Schizophrenia From the Consortium on the Genetics of Schizophrenia (COGS) Study. JAMA Psychiatry, 2019, 76, 1274.	11.0	78
33	Lessons learned by giving amphetamine to antipsychotic-medicated schizophrenia patients. Neuropsychopharmacology, 2019, 44, 2277-2284.	5.4	4
34	Divergence of subjective and performance-based cognitive gains following cognitive training in schizophrenia. Schizophrenia Research, 2019, 210, 215-220.	2.0	8
35	Verbal learning deficits associated with increased anticholinergic burden are attenuated with targeted cognitive training in treatment refractory schizophrenia patients. Schizophrenia Research, 2019, 208, 384-389.	2.0	21
36	Nonlinear dynamics underlying sensory processing dysfunction in schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3847-3852.	7.1	21

#	Article	IF	CITATIONS
37	Neurophysiologic measures of target engagement predict response to auditory-based cognitive training in treatment refractory schizophrenia. Neuropsychopharmacology, 2019, 44, 606-612.	5.4	47
38	Room to move: Plasticity in early auditory information processing and auditory learning in schizophrenia revealed by acute pharmacological challenge. Schizophrenia Research, 2018, 199, 285-291.	2.0	33
39	Auditory System Target Engagement During Plasticity-Based Interventions in Schizophrenia: A Focus on Modulation of N-Methyl-D-Aspartate–Type Glutamate Receptor Function. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2018, 3, 581-590.	1.5	16
40	Sensorimotor gating deficits in schizophrenia: Advancing our understanding of the phenotype, its neural circuitry and genetic substrates. Schizophrenia Research, 2018, 198, 1-5.	2.0	33
41	Deficient prepulse inhibition in schizophrenia in a multi-site cohort: Internal replication and extension. Schizophrenia Research, 2018, 198, 6-15.	2.0	52
42	Effects of Amphetamine on Sensorimotor Gating and Neurocognition in Antipsychotic-Medicated Schizophrenia Patients. Neuropsychopharmacology, 2018, 43, 708-717.	5.4	15
43	Targeted cognitive training improves auditory and verbal outcomes among treatment refractory schizophrenia patients mandated to residential care. Schizophrenia Research, 2018, 202, 378-384.	2.0	36
44	Mismatch Negativity is a Sensitive and Predictive Biomarker of Perceptual Learning During Auditory Cognitive Training in Schizophrenia. Neuropsychopharmacology, 2017, 42, 2206-2213.	5.4	73
45	Single-Dose Memantine Improves Cortical Oscillatory Response Dynamics in Patients with Schizophrenia. Neuropsychopharmacology, 2017, 42, 2633-2639.	5.4	55
46	Modeling Deficits From Early Auditory Information Processing to Psychosocial Functioning in Schizophrenia. JAMA Psychiatry, 2017, 74, 37.	11.0	163
47	Tolcapone-Enhanced Neurocognition in Healthy Adults: Neural Basis and Predictors. International Journal of Neuropsychopharmacology, 2017, 20, 979-987.	2.1	18
48	124. Experimental Medicine Approaches to Leveraging Auditory Information Processing Neuroplasticity Toward Therapeutic Development in Schizophrenia. Schizophrenia Bulletin, 2017, 43, S69-S69.	4.3	6
49	Treat and Teach Our Students Well: College Mental Health and Collaborative Campus Communities. Psychiatric Services, 2016, 67, 957-963.	2.0	51
50	Prioritizing schizophrenia endophenotypes for future genetic studies: An example using data from the COGS-1 family study. Schizophrenia Research, 2016, 174, 1-9.	2.0	13
51	Effects of acute memantine administration on MATRICS Consensus Cognitive Battery performance in psychosis: Testing an experimental medicine strategy. Psychopharmacology, 2016, 233, 2399-2410.	3.1	23
52	Sensorimotor gating of the startle reflex: what we said 25 years ago, what has happened since then, and what comes next. Journal of Psychopharmacology, 2016, 30, 1072-1081.	4.0	159
53	Premature responses in the five-choice serial reaction time task reflect rodents' temporal strategies: evidence from no-light and pharmacological challenges. Psychopharmacology, 2016, 233, 3513-3525.	3.1	45
54	Amphetamine Enhances Gains in Auditory Discrimination Training in Adult Schizophrenia Patients. Schizophrenia Bulletin, 2016, 43, sbw148.	4.3	21

#	Article	IF	CITATIONS
55	Genetic assessment of additional endophenotypes from the Consortium on the Genetics of Schizophrenia Family Study. Schizophrenia Research, 2016, 170, 30-40.	2.0	65
56	Measuring the capacity for auditory system plasticity: An examination of performance gains during initial exposure to auditory-targeted cognitive training in schizophrenia. Schizophrenia Research, 2016, 172, 123-130.	2.0	24
57	Reawakening research on reducing shock pain. Heart Rhythm, 2016, 13, 1149-1150.	0.7	1
58	Gating Deficit Heritability and Correlation With Increased Clinical Severity in Schizophrenia Patients With Positive Family History. American Journal of Psychiatry, 2016, 173, 385-391.	7.2	42
59	Memantine Effects On Sensorimotor Gating and Mismatch Negativity in Patients with Chronic Psychosis. Neuropsychopharmacology, 2016, 41, 419-430.	5.4	77
60	Animal Models of Deficient Sensorimotor Gating in Schizophrenia: Are They Still Relevant?. Current Topics in Behavioral Neurosciences, 2015, 28, 305-325.	1.7	45
61	Attention/vigilance in schizophrenia: Performance results from a large multi-site study of the Consortium on the Genetics of Schizophrenia (COGS). Schizophrenia Research, 2015, 163, 38-46.	2.0	62
62	Validation of mismatch negativity and P3a for use in multi-site studies of schizophrenia: Characterization of demographic, clinical, cognitive, and functional correlates in COCS-2. Schizophrenia Research, 2015, 163, 63-72.	2.0	154
63	Factor structure and heritability of endophenotypes in schizophrenia: Findings from the Consortium on the Genetics of Schizophrenia (COGS-1). Schizophrenia Research, 2015, 163, 73-79.	2.0	52
64	Consortium on the Genetics of Schizophrenia (COGS) assessment of endophenotypes for schizophrenia: An introduction to this Special Issue of schizophrenia research. Schizophrenia Research, 2015, 163, 9-16.	2.0	47
65	California Verbal Learning Test-II performance in schizophrenia as a function of ascertainment strategy: Comparing the first and second phases of the Consortium on the Genetics of Schizophrenia (COGS). Schizophrenia Research, 2015, 163, 32-37.	2.0	12
66	Verbal working memory in schizophrenia from the Consortium on the Genetics of Schizophrenia (COGS) Study: The moderating role of smoking status and antipsychotic medications. Schizophrenia Research, 2015, 163, 24-31.	2.0	26
67	The utility of P300 as a schizophrenia endophenotype and predictive biomarker: Clinical and socio-demographic modulators in COGS-2. Schizophrenia Research, 2015, 163, 53-62.	2.0	87
68	Future clinical uses of neurophysiological biomarkers to predict and monitor treatment response for schizophrenia. Annals of the New York Academy of Sciences, 2015, 1344, 105-119.	3.8	119
69	Bending the curve on psychosis outcomes. Lancet Psychiatry,the, 2015, 2, 365-367.	7.4	9
70	Robust differences in antisaccade performance exist between COGS schizophrenia cases and controls regardless of recruitment strategies. Schizophrenia Research, 2015, 163, 47-52.	2.0	16
71	Negative visuospatial priming in isolation-reared rats: Evidence of resistance to the disruptive effects of amphetamine. Cognitive, Affective and Behavioral Neuroscience, 2015, 15, 901-914.	2.0	3
72	Comparison of the Heritability of Schizophrenia and Endophenotypes in the COGS-1 Family Study. Schizophrenia Bulletin, 2014, 40, 1404-1411.	4.3	34

#	Article	IF	CITATIONS
73	The Auditory Brain-Stem Response to Complex Sounds: A Potential Biomarker for Guiding Treatment of Psychosis. Frontiers in Psychiatry, 2014, 5, 142.	2.6	21
74	Deficient prepulse inhibition in schizophrenia detected by the multi-site COGS. Schizophrenia Research, 2014, 152, 503-512.	2.0	91
75	Paternal age of schizophrenia probands and endophenotypic differences from unaffected siblings. Psychiatry Research, 2014, 219, 67-71.	3.3	2
76	Is There an Association between Advanced Paternal Age and Endophenotype Deficit Levels in Schizophrenia?. PLoS ONE, 2014, 9, e88379.	2.5	11
77	Amphetamine effects on MATRICS Consensus Cognitive Battery performance in healthy adults. Psychopharmacology, 2013, 227, 165-176.	3.1	21
78	Opposite effects of tolcapone on amphetamine-disrupted startle gating in low vs. high COMT-expressing rat strains. Pharmacology Biochemistry and Behavior, 2013, 106, 128-131.	2.9	4
79	Coupling of gene expression in medial prefrontal cortex and nucleus accumbens after neonatal ventral hippocampal lesions accompanies deficits in sensorimotor gating and auditory processing in rats. Neuropharmacology, 2013, 75, 38-46.	4.1	16
80	Forebrain gene expression predicts deficits in sensorimotor gating after isolation rearing in male rats. Behavioural Brain Research, 2013, 257, 118-128.	2.2	16
81	Update: Studies of prepulse inhibition of startle, with particular relevance to the pathophysiology or treatment of Tourette Syndrome. Neuroscience and Biobehavioral Reviews, 2013, 37, 1150-1156.	6.1	58
82	Beyond Antipsychotics: Pharmacologically-Augmented Cognitive Therapies (PACTs) for Schizophrenia. Neuropsychopharmacology, 2012, 37, 310-311.	5.4	31
83	Sensory and Sensorimotor Gating Deficits after Neonatal Ventral Hippocampal Lesions in Rats. Developmental Neuroscience, 2012, 34, 240-249.	2.0	28
84	Hierarchical Organization of Gamma and Theta Oscillatory Dynamics in Schizophrenia. Biological Psychiatry, 2012, 71, 873-880.	1.3	160
85	Fronto-temporal-mesolimbic gene expression and heritable differences in amphetamine-disrupted sensorimotor gating in rats. Psychopharmacology, 2012, 224, 349-362.	3.1	21
86	Are we studying and treating schizophrenia correctly?. Schizophrenia Research, 2011, 130, 1-10.	2.0	71
87	Probing the molecular basis for an inherited sensitivity to the startle-gating disruptive effects of apomorphine in rats. Psychopharmacology, 2011, 216, 401-410.	3.1	9
88	Integrative Circuit Models and Their Implications for the Pathophysiologies and Treatments of the Schizophrenias. Current Topics in Behavioral Neurosciences, 2010, 4, 555-583.	1.7	35
89	Behavioral neurobiology of schizophrenia and its treatment. Preface. Current Topics in Behavioral Neurosciences, 2010, 4, v-vii.	1.7	3
90	Pramipexole effects on startle gating in rats and normal men. Psychopharmacology, 2009, 205, 689-698.	3.1	21

#	Article	IF	CITATIONS
91	Effects of the first prepulse on the blink response to a startling noise Behavioral Neuroscience, 2009, 123, 607-613.	1.2	1
92	Realistic expectations of prepulse inhibition in translational models for schizophrenia research. Psychopharmacology, 2008, 199, 331-388.	3.1	479
93	A novel rat strain with enhanced sensitivity to the effects of dopamine agonists on startle gating. Pharmacology Biochemistry and Behavior, 2008, 88, 280-290.	2.9	22
94	Effects of prepulse intensity, duration, and bandwidth on perceived intensity of startling acoustic stimuli. Biological Psychology, 2007, 74, 389-395.	2.2	24
95	Multi-site studies of acoustic startle and prepulse inhibition in humans: Initial experience and methodological considerations based on studies by the Consortium on the Genetics of Schizophrenia. Schizophrenia Research, 2007, 92, 237-251.	2.0	61
96	Strain differences in the disruption of prepulse inhibition of startle after systemic and intra-accumbens amphetamine administration. Pharmacology Biochemistry and Behavior, 2007, 87, 1-10.	2.9	30
97	Startle Gating Deficits in a Large Cohort of Patients With Schizophrenia. Archives of General Psychiatry, 2006, 63, 1325-35.	12.3	305
98	Gamma Band Oscillations Reveal Neural Network Cortical Coherence Dysfunction in Schizophrenia Patients. Biological Psychiatry, 2006, 60, 1231-1240.	1.3	384
99	Forebrain D1 function and sensorimotor gating in rats: Effects of D1 blockade, frontal lesions and dopamine denervation. Neuroscience Letters, 2006, 402, 40-45.	2.1	25
100	Separable noradrenergic and dopaminergic regulation of prepulse inhibition in rats: implications for predictive validity and Tourette Syndrome. Psychopharmacology, 2006, 186, 246-254.	3.1	44
101	Antipsychotic Effects on Prepulse Inhibition in Normal â€~Low Gating' Humans and Rats. Neuropsychopharmacology, 2006, 31, 2011-2021.	5.4	66
102	In Memorium: Professor David S Segal. Neuropsychopharmacology, 2006, 31, 2331-2331.	5.4	0
103	Convergence and Divergence in the Neurochemical Regulation of Prepulse Inhibition of Startle and N40 Suppression in Rats. Neuropsychopharmacology, 2006, 31, 506-515.	5.4	54
104	Preclinical models relevant to Tourette syndrome. Advances in Neurology, 2006, 99, 69-88.	0.8	35
105	Startle modulation in Caucasian-Americans and Asian-Americans: a prelude to genetic/endophenotypic studies across the ???Pacific Rim???. Psychiatric Genetics, 2005, 15, 61-65.	1.1	34
106	Neurochemical analysis of rat strain differences in the startle gating-disruptive effects of dopamine agonists. Pharmacology Biochemistry and Behavior, 2005, 80, 203-211.	2.9	36
107	Reduced startle gating after D1 blockade: Effects of concurrent D2 blockade. Pharmacology Biochemistry and Behavior, 2005, 82, 293-299.	2.9	21
108	Using animal models to develop therapeutics for Tourette Syndrome. , 2005, 108, 281-293.		54

7

#	Article	IF	CITATIONS
109	Tourette syndrome: Current controversies and the battlefield landscape. Current Neurology and Neuroscience Reports, 2005, 5, 329-331.	4.2	6
110	Prepulse inhibition of perceived stimulus intensity: paradigm assessment. Biological Psychology, 2005, 69, 133-147.	2.2	31
111	Intact visual latent inhibition in schizophrenia patients in a within-subject paradigm. Schizophrenia Research, 2005, 72, 169-183.	2.0	22
112	Sensitivity to drug effects on prepulse inhibition in inbred and outbred rat strains. Pharmacology Biochemistry and Behavior, 2004, 77, 291-302.	2.9	40
113	Heritable differences in the dopaminergic regulation of sensorimotor gating. Psychopharmacology, 2004, 174, 452-462.	3.1	55
114	Heritable differences in the dopaminergic regulation of sensorimotor gating. Psychopharmacology, 2004, 174, 441-451.	3.1	36
115	Weak prepulses inhibit but do not elicit startle in rats and humans. Biological Psychiatry, 2004, 55, 1195-1198.	1.3	25
116	Dopamine agonists disrupt visual latent inhibition in normal males using a within-subject paradigm. Psychopharmacology, 2003, 169, 314-320.	3.1	63
117	Heritable differences in the effects of amphetamine but not DOI on startle gating in albino and hooded outbred rat strains. Pharmacology Biochemistry and Behavior, 2003, 75, 191-197.	2.9	30
118	Prestimulus modification of the startle reflex: relationship to personality and physiological markers of dopamine function. Biological Psychology, 2003, 62, 17-26.	2.2	25
119	Sensitivity to Sensorimotor Gating-Disruptive Effects of Apomorphine in two Outbred Parental Rat Strains and their F1 and N2 Progeny. Neuropsychopharmacology, 2003, 28, 226-234.	5.4	22
120	Amphetamine Effects on Prepulse Inhibition Across-Species: Replication and Parametric Extension. Neuropsychopharmacology, 2003, 28, 640-650.	5.4	80
121	Startle gating in rats is disrupted by chemical inactivation but not D2 stimulation of the dorsomedial thalamus. Brain Research, 2002, 953, 246-254.	2.2	18
122	Prestimulus effects on startle magnitude: Sensory or motor?. Behavioral Neuroscience, 2002, 116, 672-681.	1.2	10
123	Genetic differences in startle gating-disruptive effects of apomorphine: Evidence for central mediation Behavioral Neuroscience, 2002, 116, 682-690.	1.2	16
124	Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology, 2001, 156, 234-258.	3.1	1,562
125	Pharmacological studies of prepulse inhibition models of sensorimotor gating deficits in schizophrenia: a decade in review. Psychopharmacology, 2001, 156, 117-154.	3.1	1,404
126	"Early―and "Late―Effects of Sustained Haloperidol on Apomorphine- and Phencyclidine-induced Sensorimotor Gating Deficits. Neuropsychopharmacology, 2000, 23, 517-527.	5.4	38

#	Article	IF	CITATIONS
127	Regulation of Sensorimotor Gating of the Startle Reflex by Serotonin 2A Receptors Ontogeny and Strain Differences. Neuropsychopharmacology, 2000, 23, 623-632.	5.4	30
128	Cross-species Studies of Sensorimotor Gating of the Startle Reflex. Annals of the New York Academy of Sciences, 1999, 877, 202-216.	3.8	160
129	Effects of Sustained Phencyclidine Exposure on Sensorimotor Gating of Startle in Rats. Neuropsychopharmacology, 1999, 21, 28-39.	5.4	67
130	Effects of discrete acoustic prestimuli on perceived intensity and behavioral responses to startling acoustic and tactile stimuli. Cognitive, Affective and Behavioral Neuroscience, 1999, 27, 547-556.	1.3	34
131	Discrepant Findings of Clozapine Effects on Prepulse Inhibition of Startle: Is It the Route or the Rat?. Neuropsychopharmacology, 1998, 18, 50-56.	5.4	86
132	Don't leave the "un―off "consciousness― Behavioral and Brain Sciences, 1995, 18, 699-700.	0.7	2
133	Effects of D3/D2 Dopamine Receptor Agonists and Antagonists on Prepulse Inhibition of Acoustic Startle in the Rat. Neuropsychopharmacology, 1995, 12, 139-145.	5.4	70
134	Serotonin, obsessive compulsive disorder and the basal ganglia. International Review of Psychiatry, 1995, 7, 115-129.	2.8	20
135	Neuropsychology of schizophrenia: The "hole―thing is wrong. Behavioral and Brain Sciences, 1991, 14, 51-53.	0.7	9
136	Toward a unified hypothesis of cortico-striato-pallido-thalamus function?. Behavioral and Brain Sciences, 1990, 13, 172-177.	0.7	8
137	The Functional Output of the Mesolimbic Dopamine System. Annals of the New York Academy of Sciences, 1988, 537, 216-227.	3.8	133