Felix Lang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2256120/publications.pdf

Version: 2024-02-01

37 papers	2,555 citations	279798 23 h-index	31 g-index
37	37	37	3730
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Understanding Performance Limiting Interfacial Recombination in $\langle i \rangle$ pin $\langle i \rangle$ Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	19.5	95
2	Revealing the doping density in perovskite solar cells and its impact on device performance. Applied Physics Reviews, 2022, 9, .	11.3	19
3	In Situ Stability Test of a Small Amorphous Silicon Energy Harvesting Array Under Space Conditions. Lecture Notes in Electrical Engineering, 2021, , 131-137.	0.4	1
4	27.9% Efficient Monolithic Perovskite/Silicon Tandem Solar Cells on Industry Compatible Bottom Cells. Solar Rrl, 2021, 5, 2100244.	5.8	59
5	Sprayâ€Coated Leadâ€Free Cs ₂ AgBiBr ₆ Double Perovskite Solar Cells with High Openâ€Circuit Voltage. Solar Rrl, 2021, 5, 2100422.	5.8	40
6	Universal Current Losses in Perovskite Solar Cells Due to Mobile Ions. Advanced Energy Materials, 2021, 11, 2101447.	19.5	52
7	Protonâ€Radiation Tolerant Allâ€Perovskite Multijunction Solar Cells. Advanced Energy Materials, 2021, 11, 2102246.	19.5	25
8	Relaxed Current Matching Requirements in Highly Luminescent Perovskite Tandem Solar Cells and Their Fundamental Efficiency Limits. ACS Energy Letters, 2021, 6, 612-620.	17.4	38
9	Revealing Fundamental Efficiency Limits of Monolithic Perovskite/Silicon Tandem Photovoltaics through Subcell Characterization. ACS Energy Letters, 2021, 6, 3982-3991.	17.4	22
10	Proton Radiation Hardness of Perovskite Solar Cells Utilizing a Mesoporous Carbon Electrode. Energy Technology, 2021, 9, 2100928.	3.8	4
11	Protonâ€Radiation Tolerant Allâ€Perovskite Multijunction Solar Cells (Adv. Energy Mater. 41/2021). Advanced Energy Materials, 2021, 11, 2170164.	19.5	O
12	Lightâ€Induced Defect Generation in CH 3 NH 3 PbI 3 Thin Films and Single Crystals. Solar Rrl, 2020, 4, 1900216.	5.8	11
13	Proton Radiation Hardness of Perovskite Tandem Photovoltaics. Joule, 2020, 4, 1054-1069.	24.0	104
14	21.6%-Efficient Monolithic Perovskite/Cu(In,Ga)Se ₂ Tandem Solar Cells with Thin Conformal Hole Transport Layers for Integration on Rough Bottom Cell Surfaces. ACS Energy Letters, 2019, 4, 583-590.	17.4	155
15	Efficient minority carrier detrapping mediating the radiation hardness of triple-cation perovskite solar cells under proton irradiation. Energy and Environmental Science, 2019, 12, 1634-1647.	30.8	89
16	Creation and annealing of metastable defect states in CH3NH3PbI3 at low temperatures. Applied Physics Letters, 2018, 112, .	3.3	10
17	Fine Art of Thermoelectricity. ACS Applied Materials & Samp; Interfaces, 2018, 10, 4737-4742.	8.0	30
18	Influence of Radiation on the Properties and the Stability of Hybrid Perovskites. Advanced Materials, 2018, 30, 1702905.	21.0	162

#	Article	IF	CITATIONS
19	Doping Effects and Chargeâ€Transfer Dynamics at Hybrid Perovskite/Graphene Interfaces. Advanced Materials Interfaces, 2018, 5, 1800826.	3.7	11
20	Defect Dynamics in Proton Irradiated CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells. Advanced Electronic Materials, 2017, 3, 1600438.	5.1	96
21	Efficient Light Management by Textured Nanoimprinted Layers for Perovskite Solar Cells. ACS Photonics, 2017, 4, 1232-1239.	6.6	103
22	It Takes Two to Tangoâ€"Double-Layer Selective Contacts in Perovskite Solar Cells for Improved Device Performance and Reduced Hysteresis. ACS Applied Materials & Samp; Interfaces, 2017, 9, 17245-17255.	8.0	107
23	Enhancement of photocurrent in an ultra-thin perovskite solar cell by Ag nanoparticles deposited at low temperature. RSC Advances, 2017, 7, 1206-1214.	3.6	36
24	Influence of the Grain Size on the Properties of CH ₃ NH ₃ Pbl ₃ Thin Films. ACS Applied Materials & Samp; Interfaces, 2017, 9, 38428-38435.	8.0	25
25	Correlation between Electronic Defect States Distribution and Device Performance of Perovskite Solar Cells. Advanced Science, 2017, 4, 1700183.	11.2	117
26	Unraveling the Lightâ€Induced Degradation Mechanisms of CH ₃ NH ₃ Pbl ₃ Perovskite Films. Advanced Electronic Materials, 2017, 3, 1700158.	5.1	130
27	Diffusion length of photo-generated charge carriers in layers and powders of CH3NH3PbI3 perovskite. Applied Physics Letters, 2016, 109, .	3.3	33
28	Radiation Hardness and Selfâ€Healing of Perovskite Solar Cells. Advanced Materials, 2016, 28, 8726-8731.	21.0	195
29	Unravelling the low-temperature metastable state in perovskite solar cells by noise spectroscopy. Scientific Reports, 2016, 6, 34675.	3.3	32
30	Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature. Energy and Environmental Science, 2016, 9, 81-88.	30.8	536
31	Perovskite Solar Cells with Large-Area CVD-Graphene for Tandem Solar Cells. Journal of Physical Chemistry Letters, 2015, 6, 2745-2750.	4.6	170
32	Hole blocking PbI ₂ /CH ₃ NH ₃ PbI ₃ interface. Physica Status Solidi - Rapid Research Letters, 2014, 08, 763-766.	2.4	46
33	Radiation Hardness of Perovskite/Silicon and Perovskite/CIGS Tandem Solar Cells under Proton Irradiation., 0,,.		1
34	Radiation Tolerant All-Perovskite Multijunction Solar Cells for Moon, Mars and Deep Space Applications. , 0, , .		0
35	Radiation Hardness of Perovskite/Silicon and Perovskite/CIGS Tandem Solar Cells under Proton Irradiation., 0, , .		1
36	Proton Radiation Hardness of Perovskite Solar Cells Utilizing a Mesoporous Carbon Electrode., 0,,.		0

ARTICLE IF CITATIONS

37 Identifying radiation damage, non-radiative losses, and efficiency potentials of perovskite based tandem PV via subcell characterization., 0,,...