
Felix Lang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2256120/publications.pdf Version: 2024-02-01

FELINIANO

#	Article	IF	CITATIONS
1	Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature. Energy and Environmental Science, 2016, 9, 81-88.	30.8	536
2	Radiation Hardness and Selfâ€Healing of Perovskite Solar Cells. Advanced Materials, 2016, 28, 8726-8731.	21.0	195
3	Perovskite Solar Cells with Large-Area CVD-Graphene for Tandem Solar Cells. Journal of Physical Chemistry Letters, 2015, 6, 2745-2750.	4.6	170
4	Influence of Radiation on the Properties and the Stability of Hybrid Perovskites. Advanced Materials, 2018, 30, 1702905.	21.0	162
5	21.6%-Efficient Monolithic Perovskite/Cu(In,Ga)Se ₂ Tandem Solar Cells with Thin Conformal Hole Transport Layers for Integration on Rough Bottom Cell Surfaces. ACS Energy Letters, 2019, 4, 583-590.	17.4	155
6	Unraveling the Lightâ€Induced Degradation Mechanisms of CH ₃ NH ₃ PbI ₃ Perovskite Films. Advanced Electronic Materials, 2017, 3, 1700158.	5.1	130
7	Correlation between Electronic Defect States Distribution and Device Performance of Perovskite Solar Cells. Advanced Science, 2017, 4, 1700183.	11.2	117
8	It Takes Two to Tango—Double-Layer Selective Contacts in Perovskite Solar Cells for Improved Device Performance and Reduced Hysteresis. ACS Applied Materials & Interfaces, 2017, 9, 17245-17255.	8.0	107
9	Proton Radiation Hardness of Perovskite Tandem Photovoltaics. Joule, 2020, 4, 1054-1069.	24.0	104
10	Efficient Light Management by Textured Nanoimprinted Layers for Perovskite Solar Cells. ACS Photonics, 2017, 4, 1232-1239.	6.6	103
11	Defect Dynamics in Proton Irradiated CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells. Advanced Electronic Materials, 2017, 3, 1600438.	5.1	96
12	Understanding Performance Limiting Interfacial Recombination in <i>pin</i> Perovskite Solar Cells. Advanced Energy Materials, 2022, 12, .	19.5	95
13	Efficient minority carrier detrapping mediating the radiation hardness of triple-cation perovskite solar cells under proton irradiation. Energy and Environmental Science, 2019, 12, 1634-1647.	30.8	89
14	27.9% Efficient Monolithic Perovskite/Silicon Tandem Solar Cells on Industry Compatible Bottom Cells. Solar Rrl, 2021, 5, 2100244.	5.8	59
15	Universal Current Losses in Perovskite Solar Cells Due to Mobile Ions. Advanced Energy Materials, 2021, 11, 2101447.	19.5	52
16	Hole blocking PbI ₂ /CH ₃ NH ₃ PbI ₃ interface. Physica Status Solidi - Rapid Research Letters, 2014, 08, 763-766.	2.4	46
17	Sprayâ€Coated Leadâ€Free Cs ₂ AgBiBr ₆ Double Perovskite Solar Cells with High Openâ€Circuit Voltage. Solar Rrl, 2021, 5, 2100422.	5.8	40
18	Relaxed Current Matching Requirements in Highly Luminescent Perovskite Tandem Solar Cells and Their Fundamental Efficiency Limits. ACS Energy Letters, 2021, 6, 612-620.	17.4	38

Felix Lang

#	Article	IF	CITATIONS
19	Enhancement of photocurrent in an ultra-thin perovskite solar cell by Ag nanoparticles deposited at low temperature. RSC Advances, 2017, 7, 1206-1214.	3.6	36
20	Diffusion length of photo-generated charge carriers in layers and powders of CH3NH3PbI3 perovskite. Applied Physics Letters, 2016, 109, .	3.3	33
21	Unravelling the low-temperature metastable state in perovskite solar cells by noise spectroscopy. Scientific Reports, 2016, 6, 34675.	3.3	32
22	Fine Art of Thermoelectricity. ACS Applied Materials & amp; Interfaces, 2018, 10, 4737-4742.	8.0	30
23	Influence of the Grain Size on the Properties of CH ₃ NH ₃ PbI ₃ Thin Films. ACS Applied Materials & Interfaces, 2017, 9, 38428-38435.	8.0	25
24	Protonâ€Radiation Tolerant Allâ€Perovskite Multijunction Solar Cells. Advanced Energy Materials, 2021, 11, 2102246.	19.5	25
25	Revealing Fundamental Efficiency Limits of Monolithic Perovskite/Silicon Tandem Photovoltaics through Subcell Characterization. ACS Energy Letters, 2021, 6, 3982-3991.	17.4	22
26	Revealing the doping density in perovskite solar cells and its impact on device performance. Applied Physics Reviews, 2022, 9, .	11.3	19
27	Doping Effects and Chargeâ€Transfer Dynamics at Hybrid Perovskite/Graphene Interfaces. Advanced Materials Interfaces, 2018, 5, 1800826.	3.7	11
28	Lightâ€Induced Defect Generation in CH 3 NH 3 PbI 3 Thin Films and Single Crystals. Solar Rrl, 2020, 4, 1900216.	5.8	11
29	Creation and annealing of metastable defect states in CH3NH3PbI3 at low temperatures. Applied Physics Letters, 2018, 112, .	3.3	10
30	Proton Radiation Hardness of Perovskite Solar Cells Utilizing a Mesoporous Carbon Electrode. Energy Technology, 2021, 9, 2100928.	3.8	4
31	In Situ Stability Test of a Small Amorphous Silicon Energy Harvesting Array Under Space Conditions. Lecture Notes in Electrical Engineering, 2021, , 131-137.	0.4	1
32	Radiation Hardness of Perovskite/Silicon and Perovskite/CIGS Tandem Solar Cells under Proton Irradiation. , 0, , .		1
33	Radiation Hardness of Perovskite/Silicon and Perovskite/CIGS Tandem Solar Cells under Proton Irradiation. , 0, , .		1
34	Radiation Tolerant All-Perovskite Multijunction Solar Cells for Moon, Mars and Deep Space Applications. , 0, , .		0
35	Protonâ€Radiation Tolerant Allâ€Perovskite Multijunction Solar Cells (Adv. Energy Mater. 41/2021). Advanced Energy Materials, 2021, 11, 2170164.	19.5	0
36	Proton Radiation Hardness of Perovskite Solar Cells Utilizing a Mesoporous Carbon Electrode. , 0, , .		0

#	Article	IF	CITATIONS
37	Identifying radiation damage, non-radiative losses, and efficiency potentials of perovskite based tandem PV via subcell characterization. , 0, , .		0