Deepa Rangachari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2255802/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Forming the Hematology-Oncology Collaborative Videoconferencing (CO-VID) Learning Initiative: Experiential Lessons Learned From a Novel Trainee-Led Multidisciplinary Virtual Learning Platform. JCO Oncology Practice, 2022, 18, e36-e46.	2.9	6
2	Oncology Fellows' Clinical Discussions, Perceived Knowledge, and Formal Training Regarding Medical Cannabis Use: A National Survey Study. JCO Oncology Practice, 2022, 18, e1762-e1776.	2.9	5
3	Trastuzumab Deruxtecan in Non–Small-Cell Lung Cancer. New England Journal of Medicine, 2022, 386, 1769-1771.	27.0	3
4	Association of Extended Dosing Intervals or Delays in Pembrolizumab-based Regimens With Survival Outcomes in Advanced Non–small-cell Lung Cancer. Clinical Lung Cancer, 2021, 22, e379-e389.	2.6	13
5	The rapidly evolving landscape of biomarker testing in non–small cell lung cancer. Cancer Cytopathology, 2021, 129, 179-181.	2.4	13
6	Clinical Benefit of Tyrosine Kinase Inhibitors in Advanced Lung Cancer with <i>EGFR</i> -G719A and Other Uncommon <i>EGFR</i> Mutations. Oncologist, 2021, 26, 281-287.	3.7	15
7	Association of Performance Status With Survival in Patients With Advanced Non–Small Cell Lung Cancer Treated With Pembrolizumab Monotherapy. JAMA Network Open, 2021, 4, e2037120.	5.9	73
8	EGFR-D770>GY and Other Rare EGFR Exon 20 Insertion Mutations with a G770 Equivalence Are Sensitive to Dacomitinib or Afatinib and Responsive to EGFR Exon 20 Insertion Mutant-Active Inhibitors in Preclinical Models and Clinical Scenarios. Cells, 2021, 10, 3561.	4.1	7
9	Twelve tips for teaching oncology to non-oncologists. Medical Teacher, 2020, 42, 987-992.	1.8	0
10	Extensive-Stage Small-Cell Lung Cancer With Sustained Complete Response to Single-Agent Nivolumab and Immune-Related Dermatitis. Clinical Lung Cancer, 2020, 21, e6-e9.	2.6	3
11	Cases of ROS1-rearranged lung cancer: when to use crizotinib, entrectinib, lorlatinib, and beyond?. Precision Cancer Medicine, 2020, 3, 17-17.	1.8	14
12	EGFR-A763_Y764insFQEA Is a Unique Exon 20 Insertion Mutation That Displays Sensitivity to Approved and In-Development Lung Cancer EGFR Tyrosine Kinase Inhibitors. JTO Clinical and Research Reports, 2020, 1, 100051.	1.1	26
13	Small cell transformation of non-small cell lung cancer on immune checkpoint inhibitors: uncommon or under-recognized?. , 2020, 8, e000697.		31
14	Safety and efficacy of immune checkpoint inhibitors in patients with non-small cell lung cancer and hepatitis B or hepatitis C infection. Lung Cancer, 2020, 145, 181-185.	2.0	36
15	Acquired Resistance to Osimertinib Plus Savolitinib Is Mediated by MET-D1228 and MET-Y1230 Mutations in EGFR-Mutated MET-Amplified Lung Cancer. JTO Clinical and Research Reports, 2020, 1, 100071.	1.1	11
16	Association Between Immune-Related Adverse Events and Clinical Outcomes to Programmed Cell Death Protein 1/Programmed Death-Ligand 1 Blockade in SCLC. JTO Clinical and Research Reports, 2020, 1, 100074.	1.1	10
17	Concurrent osimertinib plus gefitinib for first-line treatment of EGFR-mutated non-small cell lung cancer (NSCLC) Journal of Clinical Oncology, 2020, 38, 9507-9507.	1.6	26
18	In search of goldilocks: the quest to optimize combination drug strategies for the management of advanced stage non-small-cell lung cancer. Translational Cancer Research, 2020, 9, 1311-1318.	1.0	0

DEEPA RANGACHARI

#	Article	IF	CITATIONS
19	Activity of Brigatinib in the Setting of AlectinibÂResistance Mediated by ALK I1171S inÂALK-Rearranged Lung Cancer. Journal of Thoracic Oncology, 2019, 14, e1-e3.	1.1	8
20	EGFR-Mutated Lung Cancers Resistant to Osimertinib through EGFR C797S Respond to First-Generation Reversible EGFR Inhibitors but Eventually Acquire EGFR T790M/C797S in Preclinical Models and Clinical Samples. Journal of Thoracic Oncology, 2019, 14, 1995-2002.	1.1	58
21	When Should Tumor Genomic Profiling Prompt Consideration of Germline Testing?. Journal of Oncology Practice, 2019, 15, 465-473.	2.5	63
22	Complete and Sustained Response of Brain Metastases to Programmed Death 1 Antibody Monotherapy in Treatment-naive Programmed Death Ligand 1–Positive Lung Cancer. Journal of Thoracic Oncology, 2019, 14, e34-e36.	1.1	1
23	From Hope to Reality: Durable Overall Survival With Immune Checkpoint Inhibitors for Advanced Lung Cancer. Journal of Clinical Oncology, 2019, 37, 2511-2513.	1.6	22
24	Severe pulmonary toxicity from immune checkpoint inhibitor treated successfully with intravenous immunoglobulin: Case report and review of the literature. Respiratory Medicine Case Reports, 2019, 27, 100834.	0.4	25
25	Clinical and laboratory features of autoimmune hemolytic anemia associated with immune checkpoint inhibitors. American Journal of Hematology, 2019, 94, 563-574.	4.1	51
26	Can PD-L1 tumor proportion score be used as the key to unlocking the KEYNOTE studies of pembrolizumab in advanced lung cancer?. Translational Lung Cancer Research, 2019, 8, 715-722.	2.8	5
27	PD-L1 testing using the clone 22C3 pharmDx kit for selection of patients with non–small cell lung cancer to receive immune checkpoint inhibitor therapy: are cytology cell blocks a viable option?. Journal of the American Society of Cytopathology, 2018, 7, 133-141.	0.5	56
28	Tumor biomarker testing in non-small-cell lung cancer: A decade of change. Lung Cancer, 2018, 116, 90-95.	2.0	46
29	Updated Correlation of 22C3-PD-L1 ≥50% Expression with Driver Oncogene Mutations and Response to Pembrolizumab in the Kinase Inhibitor–Resistant Setting. Journal of Thoracic Oncology, 2018, 13, e81-e83.	1.1	0
30	Safety and Efficacy of PD-1 Inhibitors Among HIV-Positive Patients With Non–Small Cell Lung Cancer. Journal of Thoracic Oncology, 2018, 13, 1037-1042.	1.1	83
31	Radiologic and autopsy findings in a case of fatal immune checkpoint inhibitor-associated pneumonitis. Cancer Treatment and Research Communications, 2018, 15, 17-20.	1.7	10
32	EGFR Exon 20 Insertion Mutations Display Sensitivity to Hsp90 Inhibition in Preclinical Models and Lung Adenocarcinomas. Clinical Cancer Research, 2018, 24, 6548-6555.	7.0	49
33	Clinical Features of Immune Checkpoint Inhibitor-Associated Autoimmune Hemolytic Anemia: A Series of 14 Cases. Blood, 2018, 132, 1037-1037.	1.4	1
34	Targeting ROS1 rearrangements in non-small cell lung cancer with crizotinib and other kinase inhibitors. Translational Cancer Research, 2018, 7, S779-S786.	1.0	43
35	Mutations in TP53 , PIK3CA , PTEN and other genes in EGFR mutated lung cancers: Correlation with clinical outcomes. Lung Cancer, 2017, 106, 17-21.	2.0	149
36	Correlation between Classic Driver Oncogene Mutations in EGFR , ALK , or ROS1 and 22C3–PD-L1 ≥50% Expression in Lung Adenocarcinoma. Journal of Thoracic Oncology, 2017, 12, 878-883.	1.1	109

Deepa Rangachari

#	Article	IF	CITATIONS
37	Cases of ALK-Rearranged Lung Cancer with 5-Year Progression-Free Survival with Crizotinib as Initial Precision Therapy. Journal of Thoracic Oncology, 2017, 12, e175-e177.	1.1	15
38	Molecular Testing Turnaround Time for Non–Small Cell Lung Cancer in Routine ClinicalÂPractice Confirms Feasibility of CAP/IASLC/AMP Guideline Recommendations: A Single-center Analysis. Clinical Lung Cancer, 2017, 18, e349-e356.	2.6	31
39	De novo ERBB2 amplification causing intrinsic resistance to erlotinib in EGFR-L858R mutated TKI-naÃ ⁻ ve lung adenocarcinoma. Lung Cancer, 2017, 114, 108-110.	2.0	9
40	Moving more potent and less toxic options to the frontline in the management of advanced lung cancer. Journal of Thoracic Disease, 2017, 9, 2812-2818.	1.4	1
41	Beyond the Sandwich: From Feedback to Clinical Coaching for Residents as Teachers. MedEdPORTAL: the Journal of Teaching and Learning Resources, 2017, 13, 10627.	1.2	5
42	Rapidly fatal advanced EGFR -mutated lung cancers and the need for rapid tumor genotyping in clinical practice. Cancer Treatment and Research Communications, 2016, 9, 41-43.	1.7	7
43	De novo ALK kinase domain mutations are uncommon in kinase inhibitor-naÃ ⁻ ve ALK rearranged lung cancers. Lung Cancer, 2016, 99, 17-22.	2.0	16
44	Management of advanced non-small cell lung cancers with known mutations or rearrangements: latest evidence and treatment approaches. Therapeutic Advances in Respiratory Disease, 2016, 10, 113-129.	2.6	125
45	Brain metastases in patients with EGFR -mutated or ALK -rearranged non-small-cell lung cancers. Lung Cancer, 2015, 88, 108-111.	2.0	369
46	De novo pulmonary small cell carcinomas and large cell neuroendocrine carcinomas harboring EGFR mutations: Lack of response to EGFR inhibitors. Lung Cancer, 2015, 88, 70-73.	2.0	30
47	Detection of Crizotinib-Sensitive Lung Adenocarcinomas With MET, ALK, and ROS1 Genomic Alterations via Comprehensive Genomic Profiling. Clinical Lung Cancer, 2015, 16, e105-e109.	2.6	10
48	Responses to the multitargeted MET/ALK/ROS1 inhibitor crizotinib and co-occurring mutations in lung adenocarcinomas with MET amplification or MET exon 14 skipping mutation. Lung Cancer, 2015, 90, 369-374.	2.0	70