Duo Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2255585/publications.pdf

Version: 2024-02-01

16 papers	796 citations	12 h-index	940533 16 g-index
16	16	16	1372
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Highly Efficient and Stable Selfâ€Powered Ultraviolet and Deepâ€Blue Photodetector Based on Cs ₂ AgBiBr ₆ /SnO ₂ Heterojunction. Advanced Optical Materials, 2018, 6, 1800811.	7.3	130
2	From Pb to Bi: A Promising Family of Pbâ€Free Optoelectronic Materials and Devices. Advanced Energy Materials, 2020, 10, 1902496.	19.5	108
3	FAPbl ₃ Flexible Solar Cells with a Record Efficiency of 19.38% Fabricated in Air via Ligand and Additive Synergetic Process. Advanced Functional Materials, 2019, 29, 1902974.	14.9	95
4	High Efficiency (16.37%) of Cesium Bromideâ€"Passivated Allâ€Inorganic CsPbI ₂ Br Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900254.	5.8	91
5	Improvement of Cs2AgBiBr6 double perovskite solar cell by rubidium doping. Organic Electronics, 2019, 74, 204-210.	2.6	84
6	High Efficiency (18.53%) of Flexible Perovskite Solar Cells via the Insertion of Potassium Chloride between SnO ₂ and CH ₃ NH ₃ Pbl ₃ Layers. ACS Applied Energy Materials, 2019, 2, 3676-3682.	5.1	60
7	ZnO/SnO ₂ Double Electron Transport Layer Guides Improved Open Circuit Voltage for Highly Efficient CH ₃ NH ₃ Pbl ₃ -Based Planar Perovskite Solar Cells. ACS Applied Energy Materials, 2018, 1, 2215-2221.	5.1	59
8	Efficient and Stable Perovskite Solar Cell with High Open-Circuit Voltage by Dimensional Interface Modification. ACS Applied Materials & Interfaces, 2019, 11, 9149-9155.	8.0	54
9	Enhancing the Photovoltaic Performance and Moisture Stability of Perovskite Solar Cells <i>Via</i> Polyfluoroalkylated Imidazolium Additives. ACS Applied Materials & Samp; Interfaces, 2021, 13, 4553-4559.	8.0	28
10	Efficient Nonlead Double Perovskite Solar Cell with Multiple Hole Transport Layers. ACS Applied Energy Materials, 2020, 3, 9594-9599.	5.1	23
11	Dopant-free Spiro-OMeTAD as hole transporting layer for stable and efficient perovskite solar cells. Organic Electronics, 2019, 74, 7-12.	2.6	22
12	To Greatly Reduce Defects via Photoannealing for High-Quality Perovskite Films. ACS Applied Materials & Lamp; Interfaces, 2019, 11, 20943-20948.	8.0	14
13	Highly Efficient Perovskite Solar Cells with Neglectable Hysteresis and Increased Open Circuit Voltage via a Nickel Chloride Interface Modification. ACS Applied Energy Materials, 2019, 2, 5883-5888.	5.1	11
14	Realizing High-Efficiency and Stable Perovskite Solar Cells via Double-Perovskite Nanocrystal Passivation. ACS Applied Energy Materials, 2022, 5, 1169-1174.	5.1	10
15	Highly efficient perovskite solar cells enhanced by biphenyl-4,4-dithiol. Solar Energy Materials and Solar Cells, 2022, 235, 111462.	6.2	5
16	The preparation method of double-blade coating to †write†high efficiency perovskite solar cells. Organic Electronics, 2022, 100, 106374.	2.6	2