
## Yu Tang

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2255465/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Impact of surgical management of primary tumors in stage IV breast cancer patients: a retrospective observational study based on SEER database. BMJ Open, 2022, 12, e054135.                             | 1.9  | 3         |
| 2  | Identification and characterization of two novel noncoding tyrosinase (TYR) gene variants leading to oculocutaneous albinism type 1. Journal of Biological Chemistry, 2022, 298, 101922.                 | 3.4  | 2         |
| 3  | miR-21 antagonist alleviates colitis and angiogenesis via the PTEN/PI3K/AKT pathway in colitis mice induced by TNBS. Annals of Translational Medicine, 2022, 10, 413-413.                                | 1.7  | 6         |
| 4  | The Double-Faceted Role of Leucine-Rich Repeat Kinase 2 in the Immunopathogenesis of Parkinson's<br>Disease. Frontiers in Aging Neuroscience, 2022, 14, .                                                | 3.4  | 6         |
| 5  | Disease Modeling with Human Neurons Reveals LMNB1 Dysregulation Underlying DYT1 Dystonia.<br>Journal of Neuroscience, 2021, 41, 2024-2038.                                                               | 3.6  | 32        |
| 6  | An induced pluripotent stem cell line (CSUi004-A) from skin fibroblasts of a healthy individual. Stem<br>Cell Research, 2021, 53, 102336.                                                                | 0.7  | 2         |
| 7  | Generation of patient-specific induced pluripotent stem cell line (CSUi002-A) from a patient with isolated dystonia carrying TOR1A mutation. Stem Cell Research, 2021, 53, 102277.                       | 0.7  | 4         |
| 8  | Establishment of an induced pluripotent stem cell line (CSUi003-A) from fibroblasts of a healthy<br>elderly individual. Stem Cell Research, 2021, 53, 102326.                                            | 0.7  | 0         |
| 9  | Establishment of a GFP::LMNB1 knockin cell line (CSUi002-A-1) from a dystonia patient-specific iPSC by<br>CRISPR/Cas9 editing. Stem Cell Research, 2021, 55, 102505.                                     | 0.7  | 2         |
| 10 | A Step-by-Step Refined Strategy for Highly Efficient Generation of Neural Progenitors and Motor<br>Neurons from Human Pluripotent Stem Cells. Cells, 2021, 10, 3087.                                     | 4.1  | 6         |
| 11 | Gene4Denovo: an integrated database and analytic platform for de novo mutations in humans. Nucleic<br>Acids Research, 2020, 48, D913-D926.                                                               | 14.5 | 41        |
| 12 | Germline PALB2 Mutations in Cancers and Its Distinction From Somatic PALB2 Mutations in Breast Cancers. Frontiers in Genetics, 2020, 11, 829.                                                            | 2.3  | 12        |
| 13 | AsCRISPR: A Web Server for Allele-Specific Single Guide RNA Design in Precision Medicine. CRISPR<br>Journal, 2020, 3, 512-522.                                                                           | 2.9  | 8         |
| 14 | Revisiting the Immune Balance Theory: A Neurological Insight Into the Epidemic of COVID-19 and Its<br>Alike. Frontiers in Neurology, 2020, 11, 566680.                                                   | 2.4  | 11        |
| 15 | <i>FGFR</i> aberrations increase the risk of brain metastases and predict poor prognosis in metastatic breast cancer patients. Therapeutic Advances in Medical Oncology, 2020, 12, 175883592091530.      | 3.2  | 12        |
| 16 | Allele-specific genome targeting in the development of precision medicine. Theranostics, 2020, 10, 3118-3137.                                                                                            | 10.0 | 18        |
| 17 | SOX4-mediated repression of specific tRNAs inhibits proliferation of human glioblastoma cells.<br>Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5782-5790. | 7.1  | 21        |
| 18 | PIK3CA gene mutations in the helical domain correlate with high tumor mutation burden and poor prognosis in metastatic breast carcinomas with late-line therapies. Aging, 2020, 12, 1577-1590.           | 3.1  | 8         |

Yu Tang

| #  | Article                                                                                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Chemotherapy Modulates Endocrine Therapy-Related Resistance Mutations in Metastatic Breast<br>Cancer. Translational Oncology, 2019, 12, 764-774.                                                                                                                                                               | 3.7  | 11        |
| 20 | Editorial: Linking Neuroinflammation and Glial Phenotypic Changes in Neurological Diseases.<br>Frontiers in Cellular Neuroscience, 2019, 13, 542.                                                                                                                                                              | 3.7  | 3         |
| 21 | Targeting N-Terminal Huntingtin with a Dual-sgRNA Strategy by CRISPR/Cas9. BioMed Research<br>International, 2019, 2019, 1-10.                                                                                                                                                                                 | 1.9  | 6         |
| 22 | Identifying Circulating Tumor DNA Mutation Profiles in Metastatic Breast Cancer Patients with<br>Multiline Resistance. EBioMedicine, 2018, 32, 111-118.                                                                                                                                                        | 6.1  | 70        |
| 23 | Editorial: Microglial Polarization in the Pathogenesis and Therapeutics of Neurodegenerative Diseases. Frontiers in Aging Neuroscience, 2018, 10, 154.                                                                                                                                                         | 3.4  | 18        |
| 24 | Inducing or Preventing Subsequent Malignancies for Breast Cancer Survivors? Double-edged Sword of Estrogen Receptor and Progesterone Receptor. Clinical Breast Cancer, 2018, 18, e1149-e1163.                                                                                                                  | 2.4  | 9         |
| 25 | Direct Reprogramming Rather than iPSC-Based Reprogramming Maintains Aging Hallmarks in Human<br>Motor Neurons. Frontiers in Molecular Neuroscience, 2017, 10, 359.                                                                                                                                             | 2.9  | 128       |
| 26 | Early pathogenic event of Alzheimer's disease documented in iPSCs from patients with PSEN1<br>mutations. Oncotarget, 2017, 8, 7900-7913.                                                                                                                                                                       | 1.8  | 44        |
| 27 | Protective Microglia and Their Regulation in Parkinson's Disease. Frontiers in Molecular<br>Neuroscience, 2016, 9, 89.                                                                                                                                                                                         | 2.9  | 91        |
| 28 | Differential Roles of M1 and M2 Microglia in Neurodegenerative Diseases. Molecular Neurobiology, 2016, 53, 1181-1194.                                                                                                                                                                                          | 4.0  | 1,438     |
| 29 | Critical Role of Tet3 in Neural Progenitor Cell Maintenance and Terminal Differentiation. Molecular<br>Neurobiology, 2015, 51, 142-154.                                                                                                                                                                        | 4.0  | 66        |
| 30 | MTOR-independent, autophagic enhancer trehalose prolongs motor neuron survival and ameliorates the autophagic flux defect in a mouse model of amyotrophic lateral sclerosis. Autophagy, 2014, 10, 588-602.                                                                                                     | 9.1  | 215       |
| 31 | Valproic Acid Reduces Neuritic Plaque Formation and Improves Learning Deficits in<br><scp>APP</scp> <sup>Swe</sup> / <scp>PS</scp> 1 <sup>A246E</sup> Transgenic Mice via Preventing the<br>Prenatal Hypoxiaâ€Induced Downâ€Regulation of Neprilysin. CNS Neuroscience and Therapeutics, 2014, 20,<br>209-217. | 3.9  | 45        |
| 32 | Suppression of histone deacetylation promotes the differentiation of human pluripotent stem cells towards neural progenitor cells. BMC Biology, 2014, 12, 95.                                                                                                                                                  | 3.8  | 38        |
| 33 | Human superoxide dismutase 1 overexpression in motor neurons of Caenorhabditis elegans causes axon guidance defect and neurodegeneration. Neurobiology of Aging, 2014, 35, 837-846.                                                                                                                            | 3.1  | 26        |
| 34 | "Good―and "Bad―Microglia in Parkinson's Disease: An Understanding of Homeostatic Mechanism<br>Immunomodulation. , 2014, , 105-126.                                                                                                                                                                             | s in | 3         |
| 35 | Adaptive changes in autophagy after UPS impairment in Parkinson's disease. Acta Pharmacologica<br>Sinica, 2013, 34, 667-673.                                                                                                                                                                                   | 6.1  | 47        |
| 36 | miR-132 regulates the differentiation of dopamine neurons by directly targeting Nurr1 expression.<br>Journal of Cell Science, 2012, 125, 1673-82.                                                                                                                                                              | 2.0  | 132       |

Yu Tang

| #  | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Gender segregation in gene expression and vulnerability to oxidative stress induced injury in ventral<br>mesencephalic cultures of dopamine neurons. Journal of Neuroscience Research, 2012, 90, 167-178. | 2.9 | 24        |
| 38 | Sall3 Correlates with the Expression of TH in Mouse Olfactory Bulb. Journal of Molecular Neuroscience, 2012, 46, 293-302.                                                                                 | 2.3 | 5         |
| 39 | Hypoxia-Induced Down-Regulation of Neprilysin by Histone Modification in Mouse Primary Cortical and Hippocampal Neurons. PLoS ONE, 2011, 6, e19229.                                                       | 2.5 | 89        |