Fu-Chen Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2255026/publications.pdf

Version: 2024-02-01

471509 276875 1,679 48 17 41 citations h-index g-index papers 49 49 49 1565 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	[Ba ₄ Cl] Cations Directed Perovskite-like Polar Metal Formate Frameworks {[Ba ₄ Cl][M ₃ (HCO ₂) ₁₃]} _{<i>n</i>} (M = Mn,) Tj I	TQg1 1 0.	784314 rgB
2	Dicarboxylate Modulating Molecular–lonic Platinum Compounds with Variable Stacking and Photoluminescence. Inorganic Chemistry, 2022, 61, 1997-2009.	4.0	1
3	Ferroelastic phase transition with large spontaneous strain caused by freezing the conformational dynamics of ammonium. Inorganic Chemistry Frontiers, 2022, 9, 1380-1385.	6.0	5
4	Dielectric and Magnetic Relaxations Exhibited in 2D Parallel Interpenetrating Frustrated Star Net. Chemistry - A European Journal, 2022, , .	3.3	2
5	Hexahydric component metal organic frameworks constructed by multiple ligands and mixed-valence ions. Inorganic Chemistry Frontiers, 2022, 9, 2081-2086.	6.0	1
6	Plasticity and Ferroelasticity Transitions of Molecular Complex [(C ₄ H ₉ N ₂) ₂][Fe ₃ O(O ₂ CH) ₉ CH)Sub>2Sub>2N _{Sub>2} Sub>3O(O ₂ CH)Sub>Sub>3Sub>3O(O ₂ CH)Sub>3Sub>3O(O ₂ Sub>2Sub>3 </td <td><i>(</i>dsoub⟩]</td> <td>5</td>	<i>(</i> dsoub⟩]	5
7	Ultra-dense carbon defects as highly active sites for oxygen reduction catalysis. CheM, 2022, 8, 2715-2733.	11.7	66
8	A magnetic site dilution approach to achieve bifunctional fluorescent thermometers and single-ion magnets. Dalton Transactions, 2021, 50, 1307-1312.	3.3	6
9	Magnetite-like mixed-valence iron ferrimagnetic homohelical chains exhibiting spin canting, spin-flop and field induced SCM like behaviours. Inorganic Chemistry Frontiers, 2020, 7, 186-190.	6.0	4
10	A CO ₂ adsorption dominated carbon defect-based electrocatalyst for efficient carbon dioxide reduction. Journal of Materials Chemistry A, 2020, 8, 1205-1211.	10.3	75
11	Construction, Magnetic and Dielectric Properties of Mixed-Valence Iron Formate with Methylammonium Guest. Acta Chimica Sinica, 2020, 78, 1223.	1.4	4
12	Construction of Designated Heptanuclear Metal 8-hydroxyquinolates with Different Ions and Auxiliary Coligands. Crystal Growth and Design, 2019, 19, 3372-3378.	3.0	5
13	<i>In situ</i> aluminium ions regulation for quantum efficiency and light stability promotion in white light emitting material. RSC Advances, 2019, 9, 15265-15268.	3.6	1
14	Tunable Ferromagnetic Strength in Niccolite Structural Heterometallic Formate Framework Based on Orthogonal Magnetic Orbital Interactions. Inorganic Chemistry, 2019, 58, 1184-1190.	4.0	15
15	Two isomorphous azide/formate Mn(ii) coordination polymers show spin-canted antiferromagnetism only in the formate system. Inorganic Chemistry Frontiers, 2018, 5, 719-722.	6.0	5
16	Gas–solid aldol condensation reaction in confined space of metal organic framework for formaldehyde detection. Nanoscale, 2018, 10, 19286-19289.	5. 6	3
17	Carbon Defect-Induced Reversible Carbon–Oxygen Interfaces for Efficient Oxygen Reduction. ACS Applied Materials & Carbon State (10, 39735-39744.	8.0	45
18	Slow magnetic relaxations in azide or formate bridged chains based on dicubane-like 3d-4f clusters. Journal of Molecular Structure, 2018, 1171, 551-555.	3.6	1

#	Article	IF	CITATIONS
19	The Design of Dual-Emissive Composite Material [Zn _{2< sub>(HL)_{3< sub>]^{+< sup>@MOF-5 as Self-Calibrating Luminescent Sensors of Al^{3+< sup> lons and Monoethanolamine. Inorganic Chemistry, 2017, 56, 9555-9562.}}}}	4.0	40
20	Co-ligand tuned pyrimidine-2-carboxylate Mn(ii) complexes from a 2D 63 layer to an interpenetrated srs-net. Dalton Transactions, 2017, 46, 8593-8597.	3.3	4
21	Crystal engineering to control the magnetic interaction between weak ferromagnetic single-chain magnets assembled in a 3D framework. Chemical Communications, 2016, 52, 8722-8725.	4.1	22
22	Gadolinium Sulfate Modified by Formate To Obtain Optimized Magneto-Caloric Effect. Inorganic Chemistry, 2015, 54, 5249-5256.	4.0	26
23	Divalent metal ions modulated strong frustrated M(<scp>ii</scp>)â€"Fe(<scp>iii</scp>) ₃ O (M = Fe, Mn, Mg) chains with metamagnetism only in a mixed valence iron complex. Chemical Communications, 2015, 51, 15336-15339.	4.1	13
24	Design and Synthesis of Stable Cobalt-Based Weak Ferromagnetic Framework with Large Spin Canting Angle. Inorganic Chemistry, 2014, 53, 13042-13048.	4.0	17
25	The synthesis, structure, and magnetic properties of two novel manganese(ii) azido/formate coordination polymers with isonicotinic acid N-oxide as a coligand. CrystEngComm, 2014, 16, 2070.	2.6	28
26	New Entangled Coordination Networks Based on Chargeâ€Tunable Kegginâ€Type Polyoxometalates. Chemistry - an Asian Journal, 2014, 9, 819-829.	3.3	43
27	Controllable synthesis of isoreticular pillared-layer MOFs: gas adsorption, iodine sorption and sensing small molecules. Journal of Materials Chemistry A, 2014, 2, 14827-14834.	10.3	89
28	Dzyaloshinski–Moriya (D–M) oriented weak ferromagnets in isomorphic coordination architectures constructed by flexible 1,2,4-triazole-1-acetate ligands with the assistance of halogen or pseudohalogen anions. Inorganic Chemistry Communication, 2013, 35, 290-294.	3.9	5
29	Examples of Heterometallic 3d-3d Azido Complexes by One-Pot Synthesis. European Journal of Inorganic Chemistry, 2013, 2013, 2389-2394.	2.0	8
30	A 3D complex containing novel 2D Cull-azido layers: Structure, magnetic properties and effects of "Non-innocent―reagent. Journal of Solid State Chemistry, 2012, 196, 145-149.	2.9	2
31	Hydrothermal syntheses, crystal structures and properties of lanthanide complexes with 4-Hydroxy-6-methylnicotinic acid. Journal of Molecular Structure, 2012, 1024, 104-109.	3.6	5
32	Versatile lanthanide-azide complexes with azide/carboxylate/hydroxy mixed bridged chain exhibiting magnetic and luminescent properties. Journal of Solid State Chemistry, 2012, 187, 143-148.	2.9	8
33	Two Cobalt Compounds Based on Azide/Methoxy and Isonicotinate N-Oxide Ligands Exhibiting Ferromagnetic and Antiferromagnetic Interactions. European Journal of Inorganic Chemistry, 2010, 2010, 4444-4449.	2.0	14
34	New divalent manganese complex with pyridine carboxylate N-oxide ligand: Synthesis, structure and magnetic properties. Journal of Solid State Chemistry, 2010, 183, 1949-1954.	2.9	6
35	One-dimensional metal-azido complex constructed by a double EO azido bridged trinuclear nickel(ii) unit: synthesis, structure and magnetic properties. Dalton Transactions, 2010, 39, 1185-1187.	3.3	17
36	Structure and magnetism of carboxylate/EO-azido-mixed-ligands bridged Cull systems. Science Bulletin, 2009, 54, 4303-4308.	9.0	7

#	Article	IF	CITATIONS
37	Novel lanthanide–azido complexes: hydrothermal syntheses, structures and magnetic properties. Dalton Transactions, 2009, , 2074.	3.3	22
38	Azido-mediated systems showing different magnetic behaviors. Chemical Society Reviews, 2009, 38, 469-480.	38.1	575
39	Interconversion of two new nickel(II) coordination polymers with different topologies: synthesis, structure and magnetic properties. Journal of Materials Chemistry, 2009, 19, 6827.	6.7	9
40	Poly[di-μ3-azido-μ2-4,4′-bipyridine-dicopper(I)]. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, m6-m6.	0.2	1
41	Two New Copper Azido Polymorphs:  Structures, Magnetic Properties, and Effects of "Noninnocent― Reagents in Hydrothermal Methods. Inorganic Chemistry, 2007, 46, 7698-7700.	4.0	53
42	Arenedisulfonate–lanthanide supramolecular architectures with phenanthroline as a co-ligand: syntheses and structures. CrystEngComm, 2007, 9, 902.	2.6	33
43	An Unusual 1D Manganese Azido Complex with Novel EO/EO/EO/EE Coordination Mode:Â Synthesis, Structure, and Magnetic Properties. Inorganic Chemistry, 2007, 46, 1520-1522.	4.0	61
44	Novel Heterometallic 3dâ^'4f Metalâ^'Azido Complex of Mixed Ligands with Unprecedented Structure Type:Â Synthesis, Structure, and Magnetic Properties. Inorganic Chemistry, 2006, 45, 6129-6131.	4.0	96
45	First Metal Azide Complex with Isonicotinate as a Bridging Ligand Showing New Net Topology:Â Hydrothermal Synthesis, Structure, and Magnetic Properties. Inorganic Chemistry, 2006, 45, 2776-2778.	4.0	120
46	Novel 3-D Framework Nickel(II) Complex with Azide, Nicotinic Acid, and Nicotinate(1â^') as Coligands:Â Hydrothermal Synthesis, Structure, and Magnetic Properties. Inorganic Chemistry, 2005, 44, 7298-7300.	4.0	103
47	Hydrothermal Synthesis and Properties of Openâ€Framework Mixedâ€valence Iron Phosphates Fe ₂ _{1.5} (PO ₄) ₃ with Threeâ€dimensional Structure. Chinese Journal of Chemistry, 2004, 22, 55-59.	4.9	2
48	Supramolecular Isomorphic Dodecanuclear Cobalt Clusters with Same Metal Shell but Different Core Ligands. Dalton Transactions, 0, , .	3.3	2