Dandan Cai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2255/publications.pdf Version: 2024-02-01

ΠΑΝΠΑΝ CAI

#	Article	IF	CITATIONS
1	Tailoring the nanostructure and electronic configuration of metal phosphides for efficient electrocatalytic oxygen evolution reactions. Nano Energy, 2020, 69, 104453.	8.2	138
2	Porous SnO2@C/graphene nanocomposite with 3D carbon conductive network as a superior anode material for lithium-ion batteries. Electrochimica Acta, 2014, 116, 103-110.	2.6	130
3	Superhigh capacity and rate capability of high-level nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Electrochimica Acta, 2013, 90, 492-497.	2.6	114
4	Ultrathin and highly-ordered CoO nanosheet arrays for lithium-ion batteries with high cycle stability and rate capability. Journal of Materials Chemistry A, 2014, 2, 5625-5630.	5.2	97
5	High specific capacity of TiO2-graphene nanocomposite as an anode material for lithium-ion batteries in an enlarged potential window. Electrochimica Acta, 2012, 74, 65-72.	2.6	79
6	High rate capability of TiO2/nitrogen-doped graphene nanocomposite as an anode material for lithium–ion batteries. Journal of Alloys and Compounds, 2013, 561, 54-58.	2.8	79
7	Facile synthesis of ultrathin-shell graphene hollow spheres for high-performance lithium-ion batteries. Electrochimica Acta, 2014, 139, 96-103.	2.6	71
8	Facile synthesis of hollow Co3O4-embedded carbon/reduced graphene oxides nanocomposites for use as efficient electrocatalysts in oxygen evolution reaction. Electrochimica Acta, 2019, 300, 123-130.	2.6	60
9	Porous SiO2 as a separator to improve the electrochemical performance of spinel LiMn2O4 cathode. Journal of Membrane Science, 2014, 449, 169-175.	4.1	52
10	Interconnected α-Fe2O3 nanosheet arrays as high-performance anode materials for lithium-ion batteries. Electrochimica Acta, 2016, 192, 407-413.	2.6	50
11	Li3V2(PO4)3@C/graphene composite with improved cycling performance as cathode material for lithium-ion batteries. Electrochimica Acta, 2013, 91, 108-113.	2.6	49
12	Superior cycle stability of graphene nanosheets prepared by freeze-drying process as anodes for lithium-ion batteries. Journal of Power Sources, 2014, 254, 198-203.	4.0	44
13	In Situ Pyrolysis Tracking and Realâ€īme Phase Evolution: From a Binary Zinc Cluster to Supercapacitive Porous Carbon. Angewandte Chemie - International Edition, 2020, 59, 13232-13237.	7.2	44
14	Theoretical and experimental exploration of tri-metallic organic frameworks (t-MOFs) for efficient electrocatalytic oxygen evolution reaction. Applied Catalysis B: Environmental, 2021, 299, 120665.	10.8	43
15	Facile synthesis of N and S co-doped graphene sheets as anode materials for high-performance lithium-ion batteries. Journal of Alloys and Compounds, 2018, 731, 235-242.	2.8	39
16	Synthesis of ZIF-9(III)/Co LDH layered composite from ZIF-9(I) based on controllable phase transition for enhanced electrocatalytic oxygen evolution reaction. Chemical Engineering Journal, 2021, 414, 128784.	6.6	38
17	Hydrothermal synthesis of SnO2 and SnO2@C nanorods and their application as anode materials in lithium-ion batteries. RSC Advances, 2013, 3, 17281.	1.7	25
18	Heptanuclear Co, Ni and mixed Co-Ni clusters as high-performance water oxidation electrocatalysts. Electrochimica Acta, 2017, 249, 343-352.	2.6	20

Dandan Cai

#	Article	IF	CITATIONS
19	Synthesis of Microspherical LiFePO4-Carbon Composites for Lithium-Ion Batteries. Nanomaterials, 2013, 3, 443-452.	1.9	19
20	Heptanuclear brucite disk with cyanide bridges in a cocrystal and tracking its pyrolysis to an efficient oxygen evolution electrode. Science Bulletin, 2019, 64, 1667-1674.	4.3	19
21	One-step conversion of tannic acid-modified ZIF-67 into oxygen defect hollow Co ₃ O ₄ /nitrogen-doped carbon for efficient electrocatalytic oxygen evolution. RSC Advances, 2020, 10, 38906-38911.	1.7	16
22	Efficient honeycomb–shaped biochar anodes for lithium-ion batteries from Eichhornia crassipes biomass. Environmental Chemistry Letters, 2021, 19, 3505-3510.	8.3	11
23	Heterostructured ultrafine metal oxides nanoparticles anchored on Co-MOF nanosheets obtained by partial pyrolysis for promoted oxygen evolution reaction. Journal of Alloys and Compounds, 2022, 912, 165143.	2.8	10
24	Facile Synthesis of Sulfate-Intercalated CoFe LDH Nanosheets Derived from Two-Dimensional ZIF-9(III) for Promoted Oxygen Evolution Reaction. Catalysts, 2022, 12, 688.	1.6	9
25	Preparation and electrochemical properties of (Fe2.5Ti0.5)1.04O4–graphene nanocomposite. Electrochimica Acta, 2013, 104, 267-273.	2.6	7
26	In Situ Pyrolysis Tracking and Realâ€īme Phase Evolution: From a Binary Zinc Cluster to Supercapacitive Porous Carbon. Angewandte Chemie, 2020, 132, 13334-13339.	1.6	6
27	Frontispiece: In Situ Pyrolysis Tracking and Realâ€Time Phase Evolution: From a Binary Zinc Cluster to Supercapacitive Porous Carbon. Angewandte Chemie - International Edition, 2020, 59, .	7.2	0
28	Frontispiz: In Situ Pyrolysis Tracking and Realâ€īme Phase Evolution: From a Binary Zinc Cluster to Supercapacitive Porous Carbon. Angewandte Chemie, 2020, 132, .	1.6	0