
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2254615/publications.pdf Version: 2024-02-01

MINCSHANC IN

#	Article	IF	CITATIONS
1	Liquid/Liquid Interface-Assisted Synthesis of Two-Dimensional Metal Networks with High-Density Planar Defects for Electrocatalysis. Chemistry of Materials, 2022, 34, 3960-3966.	6.7	4
2	Hydrothermal synthesis of palladium nitrides as robust multifunctional electrocatalysts for fuel cells. Journal of Materials Chemistry A, 2021, 9, 6196-6204.	10.3	33
3	Recent advances in nonmetallic atom-doped metal nanocrystals: Synthesis and catalytic applications. Chinese Chemical Letters, 2021, 32, 2679-2692.	9.0	11
4	Deposition of Atomically Thin Pt Shells on Amorphous Palladium Phosphide Cores for Enhancing the Electrocatalytic Durability. ACS Nano, 2021, 15, 7348-7356.	14.6	53
5	General Synthesis of Amorphous PdM (M = Cu, Fe, Co, Ni) Alloy Nanowires for Boosting HCOOH Dehydrogenation. Nano Letters, 2021, 21, 3458-3464.	9.1	48
6	Peristalsis-like migration of carbon-metabolizing catalytic nanoparticles. Extreme Mechanics Letters, 2021, 49, 101463.	4.1	1
7	Mastering the surface strain of platinum catalysts for efficient electrocatalysis. Nature, 2021, 598, 76-81.	27.8	229
8	Lattice-mismatch-induced growth of ultrathin Pt shells with high-index facets for boosting oxygen reduction catalysis. Journal of Materials Chemistry A, 2020, 8, 16477-16486.	10.3	21
9	H ₂ -Induced coalescence of Pt nanoparticles for the preparation of ultrathin Pt nanowires with high-density planar defects. Nanoscale, 2019, 11, 14828-14835.	5.6	24
10	Etching-Assisted Route to Heterophase Au Nanowires with Multiple Types of Active Surface Sites for Silane Oxidation. Nano Letters, 2019, 19, 6363-6369.	9.1	19
11	Phosphorization Treatment Improves the Catalytic Activity and Durability of Platinum Catalysts toward Oxygen Reduction Reaction. Chemistry of Materials, 2019, 31, 8205-8211.	6.7	24
12	PdC _x nanocrystals with tunable compositions for alkyne semihydrogenation. Journal of Materials Chemistry A, 2019, 7, 4714-4720.	10.3	45
13	Engineering Surface Structure of Pt Nanoshells on Pd Nanocubes to Preferentially Expose Active Surfaces for ORR by Manipulating the Growth Kinetics. Nano Letters, 2019, 19, 1743-1748.	9.1	67
14	Construction of Pd-M (M = Ni, Ag, Cu) alloy surfaces for catalytic applications. Nano Research, 2018, 11, 780-790.	10.4	61
15	An etching-assisted route for fast and large-scale fabrication of non-layered palladium nanosheets. Nanoscale, 2018, 10, 7505-7510.	5.6	16
16	Construction of Au–Pd alloy shells for enhanced catalytic performance toward alkyne semihydrogenation reactions. Materials Horizons, 2017, 4, 584-590.	12.2	40
17	Construction of light-harvesting system for enhanced catalytic performance of Pd nanoframes toward Suzuki coupling reaction. Journal of Materials Chemistry A, 2017, 5, 10150-10153.	10.3	10
18	Synthesis of Pd Nanoframes by Excavating Solid Nanocrystals for Enhanced Catalytic Properties. ACS Nano, 2017, 11, 163-170.	14.6	71

#	Article	IF	CITATIONS
19	Inflating hollow nanocrystals through a repeated Kirkendall cavitation process. Nature Communications, 2017, 8, 1261.	12.8	135
20	Coordination effect assisted synthesis of ultrathin Pt layers on second metal nanocrystals as efficient oxygen reduction electrocatalysts. Journal of Materials Chemistry A, 2016, 4, 13033-13039.	10.3	31
21	Creation of Controllable High-Density Defects in Silver Nanowires for Enhanced Catalytic Property. Nano Letters, 2016, 16, 5669-5674.	9.1	61
22	Facile preparation of hybrid anatase/rutile TiO2 nanorods with exposed (010) facets for lithium ion batteries. Materials Chemistry and Physics, 2016, 171, 11-15.	4.0	19
23	Selectivity on Etching: Creation of High-Energy Facets on Copper Nanocrystals for CO ₂ Electrochemical Reduction. ACS Nano, 2016, 10, 4559-4564.	14.6	207
24	Fabrication of Cu@M <i>_x</i> O <i>_y</i> (M = Cu, Mn, Co, Fe) Nanocable Arrays for Lithiumâ€Ion Batteries with Long Cycle Lives and High Rate Capabilities. Particle and Particle Systems Characterization, 2015, 32, 1083-1091.	2.3	4
25	Shape-Dependence of Pd Nanocrystal Carburization during Acetylene Hydrogenation. Journal of Physical Chemistry C, 2015, 119, 1101-1107.	3.1	38
26	Lattice-Mismatch-Induced Twinning for Seeded Growth of Anisotropic Nanostructures. ACS Nano, 2015, 9, 3307-3313.	14.6	86
27	Redox reaction induced Ostwald ripening for size- and shape-focusing of palladium nanocrystals. Chemical Science, 2015, 6, 5197-5203.	7.4	69
28	Bimetallic Nanocrystals: Growth Models and Controlled Synthesis. , 2015, , 75-105.		0
29	Size and Shapeâ€controlled Pd Nanocrystals on ZnO and SiO ₂ : When the Nature of the Support Determines the Active Phase. ChemCatChem, 2014, 6, 767-771.	3.7	18
30	Monitoring the shape evolution of Pd nanocubes to octahedra by PdS frame markers. Nanoscale, 2014, 6, 3518-3521.	5.6	8
31	Thermodynamic controlled synthesis of intermetallic Au ₃ Cu alloy nanocrystals from Cu microparticles. Journal of Materials Chemistry A, 2014, 2, 902-906.	10.3	77
32	Facile synthesis of Pd–Pt alloy concave nanocubes with high-index facets as electrocatalysts for methanol oxidation. CrystEngComm, 2014, 16, 2411-2416.	2.6	69
33	Dropletâ€Based Microreactors for Continuous Production of Palladium Nanocrystals with Controlled Sizes and Shapes. Small, 2013, 9, 3462-3467.	10.0	77
34	Templated high-yield synthesis of Pt nanorods enclosed by high-index {311} facets for methanol selective oxidation. Journal of Materials Chemistry A, 2013, 1, 7316.	10.3	32
35	Shape-Controlled Synthesis of Pd Nanocrystals and Their Catalytic Applications. Accounts of Chemical Research, 2013, 46, 1783-1794.	15.6	568
36	Enhancing the Photocatalytic Activity of Anatase TiO ₂ by Improving the Specific Facetâ€Induced Spontaneous Separation of Photogenerated Electrons and Holes. Chemistry - an Asian Journal, 2013, 8, 282-289.	3.3	115

#	Article	IF	CITATIONS
37	Seedâ€Mediated Synthesis of Singleâ€Crystal Gold Nanospheres with Controlled Diameters in the Range 5–30 nm and their Selfâ€Assembly upon Dilution. Chemistry - an Asian Journal, 2013, 8, 792-799.	3.3	72
38	A dispersive scattering centers-based strategy for dramatically enhancing the photocatalytic efficiency of photocatalysts in liquid-phase photochemical processes: a case of Ag nanosheets. Nanoscale, 2013, 5, 1793.	5.6	1
39	Fabrication of SBA-15 supported Ag@Au–Ag metal-core/alloy-shell nanoparticles for CO oxidation. CrystEngComm, 2013, 15, 2804.	2.6	15
40	Synthesis of Rhodium Concave Tetrahedrons by Collectively Manipulating the Reduction Kinetics, Facet-Selective Capping, and Surface Diffusion. Nano Letters, 2013, 13, 6262-6268.	9.1	66
41	Lowâ€Temperature Carbon Monoxide Oxidation with Au–Cu Meatballâ€Like Cages Prepared by Galvanic Replacement. ChemSusChem, 2013, 6, 1883-1887.	6.8	16
42	Synthesis and Characterization of Pd@M _{<i>x</i>} Cu _{1â^'<i>x</i>} (M=Au, Pd, and) Tj ETG Reactions. Chemistry - A European Journal, 2012, 18, 14974-14980.	QqO O 0 rg 3.3	gBT /Overlock 62
43	Copper Can Still Be Epitaxially Deposited on Palladium Nanocrystals To Generate Core–Shell Nanocubes Despite Their Large Lattice Mismatch. ACS Nano, 2012, 6, 2566-2573.	14.6	139
44	Enhancing the catalytic and electrocatalytic properties of Pt-based catalysts by forming bimetallic nanocrystals with Pd. Chemical Society Reviews, 2012, 41, 8035.	38.1	481
45	Palladium nanocrystals enclosed by {100} and {111} facets in controlled proportions and their catalytic activities for formic acid oxidation. Energy and Environmental Science, 2012, 5, 6352-6357.	30.8	358
46	Rücktitelbild: Controlling the Nucleation and Growth of Silver on Palladium Nanocubes by Manipulating the Reaction Kinetics (Angew. Chem. 10/2012). Angewandte Chemie, 2012, 124, 2562-2562.	2.0	0
47	Innentitelbild: Edelmetall-Nanokristalle mit konkaven OberflÄ e hen: Synthese und Anwendungen (Angew. Chem. 31/2012). Angewandte Chemie, 2012, 124, 7722-7722.	2.0	0
48	Nobleâ€Metal Nanocrystals with Concave Surfaces: Synthesis and Applications. Angewandte Chemie - International Edition, 2012, 51, 7656-7673.	13.8	411
49	A Mechanistic Study on the Nucleation and Growth of Au on Pd Seeds with a Cubic or Octahedral Shape. ChemCatChem, 2012, 4, 1668-1674.	3.7	28
50	Controlling the Nucleation and Growth of Silver on Palladium Nanocubes by Manipulating the Reaction Kinetics. Angewandte Chemie - International Edition, 2012, 51, 2354-2358.	13.8	209
51	Back Cover: Controlling the Nucleation and Growth of Silver on Palladium Nanocubes by Manipulating the Reaction Kinetics (Angew. Chem. Int. Ed. 10/2012). Angewandte Chemie - International Edition, 2012, 51, 2512-2512.	13.8	0
52	Progresses on syntheses of the noble-metal nanocrystals with exposed high-index facets. Scientia Sinica Chimica, 2012, 42, 1513-1524.	0.4	3
53	Facile syntheses and electrocatalytic properties of porous Pd and its alloy nanospheres. Journal of Materials Chemistry, 2011, 21, 9620.	6.7	62
54	Controlling the Morphology of Rhodium Nanocrystals by Manipulating the Growth Kinetics with a Syringe Pump. Nano Letters, 2011, 11, 898-903.	9.1	190

#	Article	IF	CITATIONS
55	Structural dependence of oxygen reduction reaction on palladium nanocrystals. Chemical Communications, 2011, 47, 6566.	4.1	264
56	Structure Sensitivity of Alkynol Hydrogenation on Shape- and Size-Controlled Palladium Nanocrystals: Which Sites Are Most Active and Selective?. Journal of the American Chemical Society, 2011, 133, 12787-12794.	13.7	379
57	Facile Synthesis of Pd–Pt Alloy Nanocages and Their Enhanced Performance for Preferential Oxidation of CO in Excess Hydrogen. ACS Nano, 2011, 5, 8212-8222.	14.6	236
58	Synthesis of Pdâ^'Pt Bimetallic Nanocrystals with a Concave Structure through a Bromide-Induced Galvanic Replacement Reaction. Journal of the American Chemical Society, 2011, 133, 6078-6089.	13.7	405
59	Nanocrystals Composed of Alternating Shells of Pd and Pt Can Be Obtained by Sequentially Adding Different Precursors. Journal of the American Chemical Society, 2011, 133, 10422-10425.	13.7	115
60	Synthesis of Pd nanocrystals enclosed by {100} facets and with sizes <10 nm for application in CO oxidation. Nano Research, 2011, 4, 83-91.	10.4	436
61	Palladium Concave Nanocubes with Highâ€Index Facets and Their Enhanced Catalytic Properties. Angewandte Chemie - International Edition, 2011, 50, 7850-7854.	13.8	379
62	Shapeâ€Controlled Synthesis of Copper Nanocrystals in an Aqueous Solution with Glucose as a Reducing Agent and Hexadecylamine as a Capping Agent. Angewandte Chemie - International Edition, 2011, 50, 10560-10564.	13.8	410
63	Liquid–liquid interface assisted synthesis of size- and thickness-controlled Ag nanoplates. Journal of Solid State Chemistry, 2010, 183, 1354-1358.	2.9	9
64	Synthesis of Tin Dioxide Octahedral Nanoparticles with Exposed Highâ€Energy {221} Facets and Enhanced Gasâ€Sensing Properties. Angewandte Chemie - International Edition, 2009, 48, 9180-9183.	13.8	405
65	Single-crystal-like hematite colloidal nanocrystal clusters: synthesis and applications in gas sensors, photocatalysis and water treatment. Journal of Materials Chemistry, 2009, 19, 6154.	6.7	139
66	Directional Etching Formation of Single-Crystalline Branched Nanostructures: A Case of Six-Horn-like Manganese Oxide. Journal of Physical Chemistry C, 2009, 113, 2867-2872.	3.1	12
67	Supercrystals from Crystallization of Octahedral MnO Nanocrystals. Journal of Physical Chemistry C, 2009, 113, 19107-19111.	3.1	48
68	Synthesis of Titania Nanosheets with a High Percentage of Exposed (001) Facets and Related Photocatalytic Properties. Journal of the American Chemical Society, 2009, 131, 3152-3153.	13.7	1,511
69	Direct synthesis of silver/polymer/carbon nanocables via a simple hydrothermal route. Journal of Solid State Chemistry, 2008, 181, 2359-2363.	2.9	20
70	Tensions at Liquid Interfaces:  A General Filter for the Separation of Micro-/Nanoparticles. Langmuir, 2008, 24, 2281-2283.	3.5	5