Mingshang Jin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2254615/publications.pdf

Version: 2024-02-01

66343 74163 9,547 70 42 75 citations h-index g-index papers 82 82 82 11423 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Synthesis of Titania Nanosheets with a High Percentage of Exposed (001) Facets and Related Photocatalytic Properties. Journal of the American Chemical Society, 2009, 131, 3152-3153.	13.7	1,511
2	Shape-Controlled Synthesis of Pd Nanocrystals and Their Catalytic Applications. Accounts of Chemical Research, 2013, 46, 1783-1794.	15.6	568
3	Enhancing the catalytic and electrocatalytic properties of Pt-based catalysts by forming bimetallic nanocrystals with Pd. Chemical Society Reviews, 2012, 41, 8035.	38.1	481
4	Synthesis of Pd nanocrystals enclosed by $\{100\}$ facets and with sizes < 10 nm for application in CO oxidation. Nano Research, 2011 , 4 , $83-91$.	10.4	436
5	Nobleâ€Metal Nanocrystals with Concave Surfaces: Synthesis and Applications. Angewandte Chemie - International Edition, 2012, 51, 7656-7673.	13.8	411
6	Shapeâ€Controlled Synthesis of Copper Nanocrystals in an Aqueous Solution with Glucose as a Reducing Agent and Hexadecylamine as a Capping Agent. Angewandte Chemie - International Edition, 2011, 50, 10560-10564.	13.8	410
7	Synthesis of Tin Dioxide Octahedral Nanoparticles with Exposed Highâ€Energy {221} Facets and Enhanced Gasâ€Sensing Properties. Angewandte Chemie - International Edition, 2009, 48, 9180-9183.	13.8	405
8	Synthesis of Pdâ^'Pt Bimetallic Nanocrystals with a Concave Structure through a Bromide-Induced Galvanic Replacement Reaction. Journal of the American Chemical Society, 2011, 133, 6078-6089.	13.7	405
9	Structure Sensitivity of Alkynol Hydrogenation on Shape- and Size-Controlled Palladium Nanocrystals: Which Sites Are Most Active and Selective?. Journal of the American Chemical Society, 2011, 133, 12787-12794.	13.7	379
10	Palladium Concave Nanocubes with Highâ€Index Facets and Their Enhanced Catalytic Properties. Angewandte Chemie - International Edition, 2011, 50, 7850-7854.	13.8	379
11	Palladium nanocrystals enclosed by $\{100\}$ and $\{111\}$ facets in controlled proportions and their catalytic activities for formic acid oxidation. Energy and Environmental Science, 2012, 5, 6352-6357.	30.8	358
12	Structural dependence of oxygen reduction reaction on palladium nanocrystals. Chemical Communications, 2011, 47, 6566.	4.1	264
13	Facile Synthesis of Pd–Pt Alloy Nanocages and Their Enhanced Performance for Preferential Oxidation of CO in Excess Hydrogen. ACS Nano, 2011, 5, 8212-8222.	14.6	236
14	Mastering the surface strain of platinum catalysts for efficient electrocatalysis. Nature, 2021, 598, 76-81.	27.8	229
15	Controlling the Nucleation and Growth of Silver on Palladium Nanocubes by Manipulating the Reaction Kinetics. Angewandte Chemie - International Edition, 2012, 51, 2354-2358.	13.8	209
16	Selectivity on Etching: Creation of High-Energy Facets on Copper Nanocrystals for CO ₂ Electrochemical Reduction. ACS Nano, 2016, 10, 4559-4564.	14.6	207
17	Controlling the Morphology of Rhodium Nanocrystals by Manipulating the Growth Kinetics with a Syringe Pump. Nano Letters, 2011, 11, 898-903.	9.1	190
18	Single-crystal-like hematite colloidal nanocrystal clusters: synthesis and applications in gas sensors, photocatalysis and water treatment. Journal of Materials Chemistry, 2009, 19, 6154.	6.7	139

#	Article	IF	Citations
19	Copper Can Still Be Epitaxially Deposited on Palladium Nanocrystals To Generate Core–Shell Nanocubes Despite Their Large Lattice Mismatch. ACS Nano, 2012, 6, 2566-2573.	14.6	139
20	Inflating hollow nanocrystals through a repeated Kirkendall cavitation process. Nature Communications, 2017, 8, 1261.	12.8	135
21	Nanocrystals Composed of Alternating Shells of Pd and Pt Can Be Obtained by Sequentially Adding Different Precursors. Journal of the American Chemical Society, 2011, 133, 10422-10425.	13.7	115
22	Enhancing the Photocatalytic Activity of Anatase TiO ₂ by Improving the Specific Facetâ€Induced Spontaneous Separation of Photogenerated Electrons and Holes. Chemistry - an Asian Journal, 2013, 8, 282-289.	3.3	115
23	Lattice-Mismatch-Induced Twinning for Seeded Growth of Anisotropic Nanostructures. ACS Nano, 2015, 9, 3307-3313.	14.6	86
24	Dropletâ€Based Microreactors for Continuous Production of Palladium Nanocrystals with Controlled Sizes and Shapes. Small, 2013, 9, 3462-3467.	10.0	77
25	Thermodynamic controlled synthesis of intermetallic Au ₃ Cu alloy nanocrystals from Cu microparticles. Journal of Materials Chemistry A, 2014, 2, 902-906.	10.3	77
26	Seedâ€Mediated Synthesis of Singleâ€Crystal Gold Nanospheres with Controlled Diameters in the Range 5–30 nm and their Selfâ€Assembly upon Dilution. Chemistry - an Asian Journal, 2013, 8, 792-799.	3.3	72
27	Synthesis of Pd Nanoframes by Excavating Solid Nanocrystals for Enhanced Catalytic Properties. ACS Nano, 2017, 11, 163-170.	14.6	71
28	Facile synthesis of Pd–Pt alloy concave nanocubes with high-index facets as electrocatalysts for methanol oxidation. CrystEngComm, 2014, 16, 2411-2416.	2.6	69
29	Redox reaction induced Ostwald ripening for size- and shape-focusing of palladium nanocrystals. Chemical Science, 2015, 6, 5197-5203.	7.4	69
30	Engineering Surface Structure of Pt Nanoshells on Pd Nanocubes to Preferentially Expose Active Surfaces for ORR by Manipulating the Growth Kinetics. Nano Letters, 2019, 19, 1743-1748.	9.1	67
31	Synthesis of Rhodium Concave Tetrahedrons by Collectively Manipulating the Reduction Kinetics, Facet-Selective Capping, and Surface Diffusion. Nano Letters, 2013, 13, 6262-6268.	9.1	66
32	Facile syntheses and electrocatalytic properties of porous Pd and its alloy nanospheres. Journal of Materials Chemistry, 2011, 21, 9620.	6.7	62
33	Synthesis and Characterization of Pd@M _{<i>x</i>} Cu _{1â^'<i>x</i>} (M=Au, Pd, and) Tj ET Reactions. Chemistry - A European Journal, 2012, 18, 14974-14980.	Qq1 1 0.7 3.3	84314 rgBT 62
34	Creation of Controllable High-Density Defects in Silver Nanowires for Enhanced Catalytic Property. Nano Letters, 2016, 16, 5669-5674.	9.1	61
35	Construction of Pd-M (M = Ni, Ag, Cu) alloy surfaces for catalytic applications. Nano Research, 2018, 11, 780-790.	10.4	61
36	Deposition of Atomically Thin Pt Shells on Amorphous Palladium Phosphide Cores for Enhancing the Electrocatalytic Durability. ACS Nano, 2021, 15, 7348-7356.	14.6	53

#	Article	IF	Citations
37	Supercrystals from Crystallization of Octahedral MnO Nanocrystals. Journal of Physical Chemistry C, 2009, 113, 19107-19111.	3.1	48
38	General Synthesis of Amorphous PdM (M = Cu, Fe, Co, Ni) Alloy Nanowires for Boosting HCOOH Dehydrogenation. Nano Letters, 2021, 21, 3458-3464.	9.1	48
39	PdC _x nanocrystals with tunable compositions for alkyne semihydrogenation. Journal of Materials Chemistry A, 2019, 7, 4714-4720.	10.3	45
40	Construction of Au–Pd alloy shells for enhanced catalytic performance toward alkyne semihydrogenation reactions. Materials Horizons, 2017, 4, 584-590.	12.2	40
41	Shape-Dependence of Pd Nanocrystal Carburization during Acetylene Hydrogenation. Journal of Physical Chemistry C, 2015, 119, 1101-1107.	3.1	38
42	Hydrothermal synthesis of palladium nitrides as robust multifunctional electrocatalysts for fuel cells. Journal of Materials Chemistry A, 2021, 9, 6196-6204.	10.3	33
43	Templated high-yield synthesis of Pt nanorods enclosed by high-index {311} facets for methanol selective oxidation. Journal of Materials Chemistry A, 2013, 1, 7316.	10.3	32
44	Coordination effect assisted synthesis of ultrathin Pt layers on second metal nanocrystals as efficient oxygen reduction electrocatalysts. Journal of Materials Chemistry A, 2016, 4, 13033-13039.	10.3	31
45	A Mechanistic Study on the Nucleation and Growth of Au on Pd Seeds with a Cubic or Octahedral Shape. ChemCatChem, 2012, 4, 1668-1674.	3.7	28
46	H ₂ -Induced coalescence of Pt nanoparticles for the preparation of ultrathin Pt nanowires with high-density planar defects. Nanoscale, 2019, 11, 14828-14835.	5.6	24
47	Phosphorization Treatment Improves the Catalytic Activity and Durability of Platinum Catalysts toward Oxygen Reduction Reaction. Chemistry of Materials, 2019, 31, 8205-8211.	6.7	24
48	Lattice-mismatch-induced growth of ultrathin Pt shells with high-index facets for boosting oxygen reduction catalysis. Journal of Materials Chemistry A, 2020, 8, 16477-16486.	10.3	21
49	Direct synthesis of silver/polymer/carbon nanocables via a simple hydrothermal route. Journal of Solid State Chemistry, 2008, 181, 2359-2363.	2.9	20
50	Facile preparation of hybrid anatase/rutile TiO2 nanorods with exposed (010) facets for lithium ion batteries. Materials Chemistry and Physics, 2016, 171, 11-15.	4.0	19
51	Etching-Assisted Route to Heterophase Au Nanowires with Multiple Types of Active Surface Sites for Silane Oxidation. Nano Letters, 2019, 19, 6363-6369.	9.1	19
52	Size and Shapeâ€controlled Pd Nanocrystals on ZnO and SiO ₂ : When the Nature of the Support Determines the Active Phase. ChemCatChem, 2014, 6, 767-771.	3.7	18
53	Lowâ€Temperature Carbon Monoxide Oxidation with Au–Cu Meatballâ€Like Cages Prepared by Galvanic Replacement. ChemSusChem, 2013, 6, 1883-1887.	6.8	16
54	An etching-assisted route for fast and large-scale fabrication of non-layered palladium nanosheets. Nanoscale, 2018, 10, 7505-7510.	5.6	16

#	Article	IF	CITATIONS
55	Fabrication of SBA-15 supported Ag@Au–Ag metal-core/alloy-shell nanoparticles for CO oxidation. CrystEngComm, 2013, 15, 2804.	2.6	15
56	Directional Etching Formation of Single-Crystalline Branched Nanostructures: A Case of Six-Horn-like Manganese Oxide. Journal of Physical Chemistry C, 2009, 113, 2867-2872.	3.1	12
57	Recent advances in nonmetallic atom-doped metal nanocrystals: Synthesis and catalytic applications. Chinese Chemical Letters, 2021, 32, 2679-2692.	9.0	11
58	Construction of light-harvesting system for enhanced catalytic performance of Pd nanoframes toward Suzuki coupling reaction. Journal of Materials Chemistry A, 2017, 5, 10150-10153.	10.3	10
59	Liquid–liquid interface assisted synthesis of size- and thickness-controlled Ag nanoplates. Journal of Solid State Chemistry, 2010, 183, 1354-1358.	2.9	9
60	Monitoring the shape evolution of Pd nanocubes to octahedra by PdS frame markers. Nanoscale, 2014, 6, 3518-3521.	5.6	8
61	Tensions at Liquid Interfaces:  A General Filter for the Separation of Micro-/Nanoparticles. Langmuir, 2008, 24, 2281-2283.	3.5	5
62	Fabrication of Cu@M <i>_x</i> O <i>_y</i> (M = Cu, Mn, Co, Fe) Nanocable Arrays for Lithiumâ€ion Batteries with Long Cycle Lives and High Rate Capabilities. Particle and Particle Systems Characterization, 2015, 32, 1083-1091.	2.3	4
63	Liquid/Liquid Interface-Assisted Synthesis of Two-Dimensional Metal Networks with High-Density Planar Defects for Electrocatalysis. Chemistry of Materials, 2022, 34, 3960-3966.	6.7	4
64	Progresses on syntheses of the noble-metal nanocrystals with exposed high-index facets. Scientia Sinica Chimica, 2012, 42, 1513-1524.	0.4	3
65	A dispersive scattering centers-based strategy for dramatically enhancing the photocatalytic efficiency of photocatalysts in liquid-phase photochemical processes: a case of Ag nanosheets. Nanoscale, 2013, 5, 1793.	5.6	1
66	Peristalsis-like migration of carbon-metabolizing catalytic nanoparticles. Extreme Mechanics Letters, 2021, 49, 101463.	4.1	1
67	Rýcktitelbild: Controlling the Nucleation and Growth of Silver on Palladium Nanocubes by Manipulating the Reaction Kinetics (Angew. Chem. 10/2012). Angewandte Chemie, 2012, 124, 2562-2562.	2.0	0
68	Innentitelbild: Edelmetall-Nanokristalle mit konkaven OberflÄ z hen: Synthese und Anwendungen (Angew. Chem. 31/2012). Angewandte Chemie, 2012, 124, 7722-7722.	2.0	0
69	Back Cover: Controlling the Nucleation and Growth of Silver on Palladium Nanocubes by Manipulating the Reaction Kinetics (Angew. Chem. Int. Ed. 10/2012). Angewandte Chemie - International Edition, 2012, 51, 2512-2512.	13.8	0
70	Bimetallic Nanocrystals: Growth Models and Controlled Synthesis. , 2015, , 75-105.		0