Rodrigo Carballo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2254580/publications.pdf

Version: 2024-02-01

47 papers

2,813 citations

147726 31 h-index 47 g-index

48 all docs

48 docs citations

48 times ranked 1308 citing authors

#	Article	IF	CITATIONS
1	Wave energy potential in Galicia (NW Spain). Renewable Energy, 2009, 34, 2323-2333.	4.3	195
2	Wave energy potential along the Death Coast (Spain). Energy, 2009, 34, 1963-1975.	4.5	158
3	Numerical model evaluation of tidal stream energy resources in the RÃa de Muros (NW Spain). Renewable Energy, 2009, 34, 1517-1524.	4.3	153
4	Wave energy resource in the Estaca de Bares area (Spain). Renewable Energy, 2010, 35, 1574-1584.	4.3	142
5	Offshore and inshore wave energy assessment: Asturias (N Spain). Energy, 2010, 35, 1964-1972.	4.5	141
6	Wave energy and nearshore hot spots: The case of the SE Bay of Biscay. Renewable Energy, 2010, 35, 2490-2500.	4.3	130
7	Wave resource in El Hierro—an island towards energy self-sufficiency. Renewable Energy, 2011, 36, 689-698.	4.3	128
8	A methodology to determine the power performance of wave energy converters at a particular coastal location. Energy Conversion and Management, 2012, 61, 8-18.	4.4	124
9	The new wave energy converter WaveCat: Concept and laboratory tests. Marine Structures, 2012, 29, 58-70.	1.6	115
10	Wave farm impact based on realistic wave-WEC interaction. Energy, 2013, 51, 216-229.	4.5	109
11	Choosing the site for the first wave farm in a region: A case study in the Galician Southwest (Spain). Energy, 2011, 36, 5525-5531.	4.5	104
12	Experimental and numerical investigation of the hydrodynamic performance of an oscillating water column wave energy converter. Renewable Energy, 2017, 106, 1-16.	4.3	86
13	Assessment of the impacts of tidal stream energy through high-resolution numerical modeling. Energy, 2013, 61, 541-554.	4.5	79
14	Wave power for La Isla Bonita. Energy, 2010, 35, 5013-5021.	4.5	78
15	A port towards energy self-sufficiency using tidal stream power. Energy, 2014, 71, 432-444.	4.5	66
16	A proposed wave farm on the Galician coast. Energy Conversion and Management, 2015, 99, 102-111.	4.4	64
17	The intra-annual variability in the performance of wave energy converters: A comparative study in N Galicia (Spain). Energy, 2015, 82, 138-146.	4.5	60
18	Wave farm impact: The role of farm-to-coast distance. Renewable Energy, 2014, 69, 375-385.	4.3	59

#	Article	IF	CITATIONS
19	Wave and offshore wind energy on an island. Energy for Sustainable Development, 2014, 22, 57-65.	2.0	59
20	The TSE index $\hat{a} \in A$ new tool for selecting tidal stream sites in depth-limited regions. Renewable Energy, 2012, 48, 350-357.	4.3	57
21	Tidal stream energy impact on the transient and residual flow in an estuary: A 3D analysis. Applied Energy, 2014, 116, 167-177.	5.1	50
22	A high resolution geospatial database for wave energy exploitation. Energy, 2014, 68, 572-583.	4.5	48
23	Tidal stream energy impacts on estuarine circulation. Energy Conversion and Management, 2014, 80, 137-149.	4.4	47
24	Performance of artificial neural networks in nearshore wave power prediction. Applied Soft Computing Journal, 2014, 23, 194-201.	4.1	46
25	Intra-annual wave resource characterization for energy exploitation: A new decision-aid tool. Energy Conversion and Management, 2015, 93, 1-8.	4.4	42
26	Residual circulation in the RÃa de Muros (NW Spain): A 3D numerical model study. Journal of Marine Systems, 2009, 75, 116-130.	0.9	41
27	Seasonality of the circulation in the RÃa de Muros (NW Spain). Journal of Marine Systems, 2009, 78, 94-108.	0.9	39
28	Floating boom performance under waves and currents. Journal of Hazardous Materials, 2010, 174, 226-235.	6.5	37
29	Energy production from tidal currents in an estuary: A comparative study of floating and bottom-fixed turbines. Energy, 2014, 77, 802-811.	4.5	37
30	Neural network modelling of planform geometry of headland-bay beaches. Geomorphology, 2009, 103, 577-587.	1.1	36
31	Floating vs. bottom-fixed turbines for tidal stream energy: A comparative impact assessment. Energy, 2014, 72, 691-701.	4.5	31
32	Effects of high winds on the circulation of the using a mixed open boundary condition: the RÃa de Muros, Spain. Environmental Modelling and Software, 2010, 25, 455-466.	1.9	29
33	Evaluation of the production of tidal stream energy in an inlet channel by coupling field data and numerical modelling. Energy, 2014, 71, 104-117.	4. 5	27
34	Baroclinic modelling and analysis of tide- and wind-induced circulation in the RÃa de Muros (NW) Tj ETQq0 0 0	rgBT/Qver	lock 10 Tf 50 1
35	A virtual laboratory for stability tests of rubble-mound breakwaters. Ocean Engineering, 2008, 35, 1113-1120.	1.9	24
36	WFD Indicators and Definition of the Ecological Status of Rivers. Water Resources Management, 2009, 23, 2231-2247.	1.9	20

#	Article	IF	CITATIONS
37	Headland-bay beach planform and tidal range: A neural network model. Geomorphology, 2009, 112, 135-143.	1.1	20
38	A tool for combined WEC-site selection throughout a coastal region: Rias Baixas, NW Spain. Applied Energy, 2014, 135, 11-19.	5.1	19
39	Co-located wave-wind farms for improved O&M efficiency. Ocean and Coastal Management, 2018, 163, 66-71.	2.0	18
40	Can the Seasonality of a Small River Affect a Large Tide-Dominated Estuary? The Case of RÃa de Viveiro, Spain. Journal of Coastal Research, 2011, 277, 1170-1182.	0.1	17
41	Power peaks against installed capacity in tidal stream energy. IET Renewable Power Generation, 2013, 7, 246-253.	1.7	16
42	An integrated approach for the planning of dredging operations in estuaries. Ocean Engineering, 2017, 140, 73-83.	1.9	16
43	An integrated approach for the installation of a wave farm. Energy, 2017, 138, 910-919.	4.5	11
44	OPTIMIZATION OF THE WAVECAT WAVE ENERGY CONVERTER. Coastal Engineering Proceedings, 2012, 1, 5.	0.1	7
45	WAVE FARM LAYOUT AND COASTAL IMPACTS. Coastal Engineering Proceedings, 2015, 1, 36.	0.1	1
46	IMPACT OF TIDAL STREAM ENERGY EXPLOITATION ON ESTUARINE HYDRODYNAMICS. Coastal Engineering Proceedings, 2015, 1, 22.	0.1	1
47	BAROCLINIC MODEL STUDY OF THE MARINE CURRENT ENERGY POTENTIAL IN THE RIA DE MUROS (NW SPAIN). , 2009, , .		O