Binh Thai Pham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2254450/publications.pdf Version: 2024-02-01

		10373	20343
210	16,155	72	116
papers	citations	h-index	g-index
213	213	213	5790
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran. Science of the Total Environment, 2018, 627, 744-755.	3.9	494
2	Hybrid integration of Multilayer Perceptron Neural Networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS. Catena, 2017, 149, 52-63.	2.2	467
3	A novel hybrid artificial intelligence approach for flood susceptibility assessment. Environmental Modelling and Software, 2017, 95, 229-245.	1.9	416
4	A comparative assessment of flood susceptibility modeling using Multi-Criteria Decision-Making Analysis and Machine Learning Methods. Journal of Hydrology, 2019, 573, 311-323.	2.3	409
5	Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan. Science of the Total Environment, 2019, 662, 332-346.	3.9	378
6	A comparative study of different machine learning methods for landslide susceptibility assessment: A case study of Uttarakhand area (India). Environmental Modelling and Software, 2016, 84, 240-250.	1.9	377
7	Landslide susceptibility mapping using J48 Decision Tree with AdaBoost, Bagging and Rotation Forest ensembles in the Guangchang area (China). Catena, 2018, 163, 399-413.	2.2	367
8	Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed, Japan. Landslides, 2020, 17, 641-658.	2.7	294
9	Landslide susceptibility assesssment in the Uttarakhand area (India) using GIS: a comparison study of prediction capability of naÃ̄ve bayes, multilayer perceptron neural networks, and functional trees methods. Theoretical and Applied Climatology, 2017, 128, 255-273.	1.3	264
10	Landslide susceptibility modeling using Reduced Error Pruning Trees and different ensemble techniques: Hybrid machine learning approaches. Catena, 2019, 175, 203-218.	2.2	229
11	GIS-based modeling of rainfall-induced landslides using data mining-based functional trees classifier with AdaBoost, Bagging, and MultiBoost ensemble frameworks. Environmental Earth Sciences, 2016, 75, 1.	1.3	215
12	Shallow landslide susceptibility assessment using a novel hybrid intelligence approach. Environmental Earth Sciences, 2017, 76, 1.	1.3	211
13	Artificial Intelligence Approaches for Prediction of Compressive Strength of Geopolymer Concrete. Materials, 2019, 12, 983.	1.3	210
14	Meta optimization of an adaptive neuro-fuzzy inference system with grey wolf optimizer and biogeography-based optimization algorithms for spatial prediction of landslide susceptibility. Catena, 2019, 175, 430-445.	2.2	199
15	A spatially explicit deep learning neural network model for the prediction of landslide susceptibility. Catena, 2020, 188, 104451.	2.2	199
16	Flash flood susceptibility modeling using an optimized fuzzy rule based feature selection technique and tree based ensemble methods. Science of the Total Environment, 2019, 668, 1038-1054.	3.9	195
17	Influence of Data Splitting on Performance of Machine Learning Models in Prediction of Shear Strength of Soil. Mathematical Problems in Engineering, 2021, 2021, 1-15.	0.6	189
18	Spatial prediction of landslides using a hybrid machine learning approach based on Random Subspace and Classification and Regression Trees. Geomorphology, 2018, 303, 256-270.	1.1	180

#	Article	IF	CITATIONS
19	Prediction Success of Machine Learning Methods for Flash Flood Susceptibility Mapping in the Tafresh Watershed, Iran. Sustainability, 2019, 11, 5426.	1.6	172
20	A novel hybrid intelligent model of support vector machines and the MultiBoost ensemble for landslide susceptibility modeling. Bulletin of Engineering Geology and the Environment, 2019, 78, 2865-2886.	1.6	163
21	Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, Naìve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms. International Journal of Environmental Research and Public Health, 2020, 17, 2749.	1.2	159
22	Different sampling strategies for predicting landslide susceptibilities are deemed less consequential with deep learning. Science of the Total Environment, 2020, 720, 137320.	3.9	157
23	A comparison study of DRASTIC methods with various objective methods for groundwater vulnerability assessment. Science of the Total Environment, 2018, 642, 1032-1049.	3.9	151
24	Prediction of shear strength of soft soil using machine learning methods. Catena, 2018, 166, 181-191.	2.2	146
25	Novel GIS Based Machine Learning Algorithms for Shallow Landslide Susceptibility Mapping. Sensors, 2018, 18, 3777.	2.1	146
26	Mapping Groundwater Potential Using a Novel Hybrid Intelligence Approach. Water Resources Management, 2019, 33, 281-302.	1.9	145
27	A novel artificial intelligence approach based on Multi-layer Perceptron Neural Network and Biogeography-based Optimization for predicting coefficient of consolidation of soil. Catena, 2019, 173, 302-311.	2.2	143
28	Landslide Susceptibility Modeling Based on GIS and Novel Bagging-Based Kernel Logistic Regression. Applied Sciences (Switzerland), 2018, 8, 2540.	1.3	140
29	Landslide Susceptibility Mapping Using Different GIS-Based Bivariate Models. Water (Switzerland), 2019, 11, 1402.	1.2	137
30	Hybrid Machine Learning Approaches for Landslide Susceptibility Modeling. Forests, 2019, 10, 157.	0.9	136
31	A hybrid machine learning ensemble approach based on a Radial Basis Function neural network and Rotation Forest for landslide susceptibility modeling: A case study in the Himalayan area, India. International Journal of Sediment Research, 2018, 33, 157-170.	1.8	131
32	Evaluating scale effects of topographic variables in landslide susceptibility models using GIS-based machine learning techniques. Scientific Reports, 2019, 9, 12296.	1.6	131
33	Landslide Susceptibility Assessment by Novel Hybrid Machine Learning Algorithms. Sustainability, 2019, 11, 4386.	1.6	130
34	Development of artificial intelligence models for the prediction of Compression Coefficient of soil: An application of Monte Carlo sensitivity analysis. Science of the Total Environment, 2019, 679, 172-184.	3.9	128
35	GIS Based Hybrid Computational Approaches for Flash Flood Susceptibility Assessment. Water (Switzerland), 2020, 12, 683.	1.2	126
36	Development of advanced artificial intelligence models for daily rainfall prediction. Atmospheric Research, 2020, 237, 104845.	1.8	125

#	Article	IF	CITATIONS
37	Flood Spatial Modeling in Northern Iran Using Remote Sensing and GIS: A Comparison between Evidential Belief Functions and Its Ensemble with a Multivariate Logistic Regression Model. Remote Sensing, 2019, 11, 1589.	1.8	124
38	Evaluating GIS-Based Multiple Statistical Models and Data Mining for Earthquake and Rainfall-Induced Landslide Susceptibility Using the LiDAR DEM. Remote Sensing, 2019, 11, 638.	1.8	124
39	A Sensitivity and Robustness Analysis of GPR and ANN for High-Performance Concrete Compressive Strength Prediction Using a Monte Carlo Simulation. Sustainability, 2020, 12, 830.	1.6	124
40	Prediction of ground vibration induced by blasting operations through the use of the Bayesian Network and random forest models. Soil Dynamics and Earthquake Engineering, 2020, 139, 106390.	1.9	123
41	Soft Computing Ensemble Models Based on Logistic Regression for Groundwater Potential Mapping. Applied Sciences (Switzerland), 2020, 10, 2469.	1.3	121
42	Spatial prediction of rainfall-induced shallow landslides using hybrid integration approach of Least-Squares Support Vector Machines and differential evolution optimization: a case study in Central Vietnam. International Journal of Digital Earth, 2016, 9, 1077-1097.	1.6	117
43	Rotation forest fuzzy rule-based classifier ensemble for spatial prediction of landslides using CIS. Natural Hazards, 2016, 83, 97-127.	1.6	116
44	Assessing Dynamic Conditions of the Retaining Wall: Developing Two Hybrid Intelligent Models. Applied Sciences (Switzerland), 2019, 9, 1042.	1.3	116
45	Performance Evaluation of Machine Learning Methods for Forest Fire Modeling and Prediction. Symmetry, 2020, 12, 1022.	1.1	115
46	A novel hybrid approach of landslide susceptibility modelling using rotation forest ensemble and different base classifiers. Geocarto International, 2020, 35, 1267-1292.	1.7	114
47	A Comparative Study of Least Square Support Vector Machines and Multiclass Alternating Decision Trees for Spatial Prediction of Rainfall-Induced Landslides in a Tropical Cyclones Area. Geotechnical and Geological Engineering, 2016, 34, 1807-1824.	0.8	110
48	Wildfire spatial pattern analysis in the Zagros Mountains, Iran: A comparative study of decision tree based classifiers. Ecological Informatics, 2018, 43, 200-211.	2.3	110
49	Hybrid computational intelligence models for groundwater potential mapping. Catena, 2019, 182, 104101.	2.2	110
50	Improvement of Best First Decision Trees Using Bagging and Dagging Ensembles for Flood Probability Mapping. Water Resources Management, 2020, 34, 3037-3053.	1.9	107
51	A novel hybrid integration model using support vector machines and random subspace for weather-triggered landslide susceptibility assessment in the Wuning area (China). Environmental Earth Sciences, 2017, 76, 1.	1.3	105
52	A novel hybrid approach of Bayesian Logistic Regression and its ensembles for landslide susceptibility assessment. Geocarto International, 2019, 34, 1427-1457.	1.7	105
53	Meteorological data mining and hybrid data-intelligence models for reference evaporation simulation: A case study in Iraq. Computers and Electronics in Agriculture, 2019, 167, 105041.	3.7	105
54	A comparative study between popular statistical and machine learning methods for simulating volume of landslides. Catena, 2017, 157, 213-226.	2.2	104

#	Article	IF	CITATIONS
55	Landslide Susceptibility Assessment Using Bagging Ensemble Based Alternating Decision Trees, Logistic Regression and J48 Decision Trees Methods: A Comparative Study. Geotechnical and Geological Engineering, 2017, 35, 2597-2611.	0.8	101
56	Groundwater Potential Mapping Combining Artificial Neural Network and Real AdaBoost Ensemble Technique: The DakNong Province Case-study, Vietnam. International Journal of Environmental Research and Public Health, 2020, 17, 2473.	1.2	100
57	Prediction of Compressive Strength of Geopolymer Concrete Using Entirely Steel Slag Aggregates: Novel Hybrid Artificial Intelligence Approaches. Applied Sciences (Switzerland), 2019, 9, 1113.	1.3	99
58	Bagging based Support Vector Machines for spatial prediction of landslides. Environmental Earth Sciences, 2018, 77, 1.	1.3	97
59	Flash flood susceptibility mapping using a novel deep learning model based on deep belief network, back propagation and genetic algorithm. Geoscience Frontiers, 2021, 12, 101100.	4.3	95
60	Flood risk assessment using hybrid artificial intelligence models integrated with multi-criteria decision analysis in Quang Nam Province, Vietnam. Journal of Hydrology, 2021, 592, 125815.	2.3	91
61	Shallow Landslide Prediction Using a Novel Hybrid Functional Machine Learning Algorithm. Remote Sensing, 2019, 11, 931.	1.8	90
62	Coupling RBF neural network with ensemble learning techniques for landslide susceptibility mapping. Catena, 2020, 195, 104805.	2.2	90
63	New Ensemble Models for Shallow Landslide Susceptibility Modeling in a Semi-Arid Watershed. Forests, 2019, 10, 743.	0.9	89
64	A comparison of Support Vector Machines and Bayesian algorithms for landslide susceptibility modelling. Geocarto International, 2019, 34, 1385-1407.	1.7	88
65	Shallow Landslide Susceptibility Mapping by Random Forest Base Classifier and Its Ensembles in a Semi-Arid Region of Iran. Forests, 2020, 11, 421.	0.9	87
66	A Novel Ensemble Artificial Intelligence Approach for Gully Erosion Mapping in a Semi-Arid Watershed (Iran). Sensors, 2019, 19, 2444.	2.1	86
67	Application and Comparison of Decision Tree-Based Machine Learning Methods in Landside Susceptibility Assessment at Pauri Garhwal Area, Uttarakhand, India. Environmental Processes, 2017, 4, 711-730.	1.7	85
68	A Comparative Study of Kernel Logistic Regression, Radial Basis Function Classifier, Multinomial NaÃ ⁻ ve Bayes, and Logistic Model Tree for Flash Flood Susceptibility Mapping. Water (Switzerland), 2020, 12, 239.	1.2	85
69	A Novel Integrated Approach of Relevance Vector Machine Optimized by Imperialist Competitive Algorithm for Spatial Modeling of Shallow Landslides. Remote Sensing, 2018, 10, 1538.	1.8	84
70	A novel ensemble classifier of rotation forest and NaÃ ⁻ ve Bayer for landslide susceptibility assessment at the Luc Yen district, Yen Bai Province (Viet Nam) using GIS. Geomatics, Natural Hazards and Risk, 2017, 8, 649-671.	2.0	81
71	Improvement of ANFIS Model for Prediction of Compressive Strength of Manufactured Sand Concrete. Applied Sciences (Switzerland), 2019, 9, 3841.	1.3	78
72	GIS-Based Gully Erosion Susceptibility Mapping: A Comparison of Computational Ensemble Data Mining Models. Applied Sciences (Switzerland), 2020, 10, 2039.	1.3	78

#	Article	IF	CITATIONS
73	Optimization of an adaptive neuro-fuzzy inference system for groundwater potential mapping. Hydrogeology Journal, 2019, 27, 2511-2534.	0.9	76
74	Soil erosion potential hotspot zone identification using machine learning and statistical approaches in eastern India. Natural Hazards, 2020, 104, 1259-1294.	1.6	76
75	A Novel Hybrid Soft Computing Model Using Random Forest and Particle Swarm Optimization for Estimation of Undrained Shear Strength of Soil. Sustainability, 2020, 12, 2218.	1.6	74
76	A comparative study of sequential minimal optimization-based support vector machines, vote feature intervals, and logistic regression in landslide susceptibility assessment using GIS. Environmental Earth Sciences, 2017, 76, 1.	1.3	72
77	Optimization of Artificial Intelligence System by Evolutionary Algorithm for Prediction of Axial Capacity of Rectangular Concrete Filled Steel Tubes under Compression. Materials, 2020, 13, 1205.	1.3	71
78	Application of artificial neural networks for predicting tree survival and mortality in the Hyrcanian forest of Iran. Computers and Electronics in Agriculture, 2019, 164, 104929.	3.7	70
79	A novel approach for classification of soils based on laboratory tests using Adaboost, Tree and ANN modeling. Transportation Geotechnics, 2021, 27, 100508.	2.0	70
80	Spatial Prediction of Rainfall-Induced Landslides Using Aggregating One-Dependence Estimators Classifier. Journal of the Indian Society of Remote Sensing, 2018, 46, 1457-1470.	1.2	69
81	Hybrid Artificial Intelligence Approaches for Predicting Buckling Damage of Steel Columns Under Axial Compression. Materials, 2019, 12, 1670.	1.3	69
82	Development of an AI Model to Measure Traffic Air Pollution from Multisensor and Weather Data. Sensors, 2019, 19, 4941.	2.1	69
83	Flood risk assessment using deep learning integrated with multi-criteria decision analysis. Knowledge-Based Systems, 2021, 219, 106899.	4.0	69
84	Inferring air pollution from air quality index by different geographical areas: case study in India. Air Quality, Atmosphere and Health, 2019, 12, 1347-1357.	1.5	67
85	Investigation and Optimization of the C-ANN Structure in Predicting the Compressive Strength of Foamed Concrete. Materials, 2020, 13, 1072.	1.3	67
86	Hybrid Artificial Intelligence Approaches for Predicting Critical Buckling Load of Structural Members under Compression Considering the Influence of Initial Geometric Imperfections. Applied Sciences (Switzerland), 2019, 9, 2258.	1.3	66
87	River Water Salinity Prediction Using Hybrid Machine Learning Models. Water (Switzerland), 2020, 12, 2951.	1.2	66
88	Estimation of axial load-carrying capacity of concrete-filled steel tubes using surrogate models. Neural Computing and Applications, 2021, 33, 3437-3458.	3.2	66
89	Determination of compound channel apparent shear stress: application of novel data mining models. Journal of Hydroinformatics, 2019, 21, 798-811.	1.1	65
90	Can deep learning algorithms outperform benchmark machine learning algorithms in flood susceptibility modeling?. Journal of Hydrology, 2021, 592, 125615.	2.3	65

#	Article	IF	CITATIONS
91	A Hybrid Computational Intelligence Approach to Groundwater Spring Potential Mapping. Water (Switzerland), 2019, 11, 2013.	1.2	64
92	Landslide susceptibility modeling using different artificial intelligence methods: a case study at Muong Lay district, Vietnam. Geocarto International, 2021, 36, 1685-1708.	1.7	64
93	Evaluation and comparison of LogitBoost Ensemble, Fisher's Linear Discriminant Analysis, logistic regression and support vector machines methods for landslide susceptibility mapping. Geocarto International, 2019, 34, 316-333.	1.7	63
94	A novel hybrid model of Bagging-based NaÃ⁻ve Bayes Trees for landslide susceptibility assessment. Bulletin of Engineering Geology and the Environment, 2019, 78, 1911-1925.	1.6	62
95	Novel Entropy and Rotation Forest-Based Credal Decision Tree Classifier for Landslide Susceptibility Modeling. Entropy, 2019, 21, 106.	1.1	61
96	Improved flood susceptibility mapping using a best first decision tree integrated with ensemble learning techniques. Geoscience Frontiers, 2021, 12, 101105.	4.3	60
97	Ensemble modeling of landslide susceptibility using random subspace learner and different decision tree classifiers. Geocarto International, 2022, 37, 735-757.	1.7	59
98	Development of a Novel Hybrid Intelligence Approach for Landslide Spatial Prediction. Applied Sciences (Switzerland), 2019, 9, 2824.	1.3	58
99	Prediction and Sensitivity Analysis of Bubble Dissolution Time in 3D Selective Laser Sintering Using Ensemble Decision Trees. Materials, 2019, 12, 1544.	1.3	57
100	Permeability prediction of porous media using a combination of computational fluid dynamics and hybrid machine learning methods. Engineering With Computers, 2021, 37, 3455-3471.	3.5	56
101	A Novel Intelligent ELM-BBO Technique for Predicting Distance of Mine Blasting-Induced Flyrock. Natural Resources Research, 2020, 29, 4103-4120.	2.2	56
102	Torrential rainfall-triggered shallow landslide characteristics and susceptibility assessment using ensemble data-driven models in the Dongjiang Reservoir Watershed, China. Natural Hazards, 2019, 97, 579-609.	1.6	55
103	Adaptive Network Based Fuzzy Inference System with Meta-Heuristic Optimizations for International Roughness Index Prediction. Applied Sciences (Switzerland), 2019, 9, 4715.	1.3	55
104	Bedload transport rate prediction: Application of novel hybrid data mining techniques. Journal of Hydrology, 2020, 585, 124774.	2.3	55
105	Landslide susceptibility modelling using different advanced decision trees methods. Civil Engineering and Environmental Systems, 2018, 35, 139-157.	0.4	54
106	Novel approach for forecasting the blast-induced AOp using a hybrid fuzzy system and firefly algorithm. Engineering With Computers, 2020, 36, 703-712.	3.5	54
107	Flood spatial prediction modeling using a hybrid of meta-optimization and support vector regression modeling. Catena, 2021, 199, 105114.	2.2	53
108	Mapping forest fire susceptibility using spatially explicit ensemble models based on the locally weighted learning algorithm. Ecological Informatics, 2021, 63, 101292.	2.3	53

#	Article	IF	CITATIONS
109	Landslide Hazard Assessment Using Random SubSpace Fuzzy Rules Based Classifier Ensemble and Probability Analysis of Rainfall Data: A Case Study at Mu Cang Chai District, Yen Bai Province (Viet) Tj ETQq1	1 0.78 4 314 r	gB Ђ ⊉Overlo⊂
110	Wildfire Probability Mapping: Bivariate vs. Multivariate Statistics. Remote Sensing, 2019, 11, 618.	1.8	52
111	Computational Hybrid Machine Learning Based Prediction of Shear Capacity for Steel Fiber Reinforced Concrete Beams. Sustainability, 2020, 12, 2709.	1.6	52
112	A new hybridÂsimulated annealing-based geneticÂprogramming technique to predict the ultimateÂbearing capacity of piles. Engineering With Computers, 2021, 37, 2111.	3.5	50
113	Spatial Prediction of Landslides Using Hybrid Integration of Artificial Intelligence Algorithms with Frequency Ratio and Index of Entropy in Nanzheng County, China. Applied Sciences (Switzerland), 2020, 10, 29.	1.3	48
114	Flash-Flood Potential Mapping Using Deep Learning, Alternating Decision Trees and Data Provided by Remote Sensing Sensors. Sensors, 2021, 21, 280.	2.1	48
115	Development of Hybrid Artificial Intelligence Approaches and a Support Vector Machine Algorithm for Predicting the Marshall Parameters of Stone Matrix Asphalt. Applied Sciences (Switzerland), 2019, 9, 3172.	1.3	46
116	Flocculation-dewatering prediction of fine mineral tailings using a hybrid machine learning approach. Chemosphere, 2020, 244, 125450.	4.2	46
117	Using GIS, Remote Sensing, and Machine Learning to Highlight the Correlation between the Land-Use/Land-Cover Changes and Flash-Flood Potential. Remote Sensing, 2020, 12, 1422.	1.8	46
118	Improvement of Credal Decision Trees Using Ensemble Frameworks for Groundwater Potential Modeling. Sustainability, 2020, 12, 2622.	1.6	46
119	Flash-flood hazard using deep learning based on H2O R package and fuzzy-multicriteria decision-making analysis. Journal of Hydrology, 2022, 609, 127747.	2.3	46
120	Performance Evaluation of GIS-Based Artificial Intelligence Approaches for Landslide Susceptibility Modeling and Spatial Patterns Analysis. ISPRS International Journal of Geo-Information, 2020, 9, 443.	1.4	45
121	Metaheuristic optimization of Levenberg–Marquardt-based artificial neural network using particle swarm optimization for prediction of foamed concrete compressive strength. Neural Computing and Applications, 2021, 33, 17331-17351.	3.2	44
122	Rainfall induced landslide susceptibility mapping using novel hybrid soft computing methods based on multi-layer perceptron neural network classifier. Geocarto International, 2022, 37, 2747-2771.	1.7	43
123	Soft-computing techniques for prediction of soils consolidation coefficient. Catena, 2020, 195, 104802.	2.2	43
124	Extreme Learning Machine Based Prediction of Soil Shear Strength: A Sensitivity Analysis Using Monte Carlo Simulations and Feature Backward Elimination. Sustainability, 2020, 12, 2339.	1.6	43
125	Optimum model for bearing capacity of concrete-steel columns with AI technology via incorporating the algorithms of IWO and ABC. Engineering With Computers, 2021, 37, 797-807.	3.5	43
126	SEVUCAS: A Novel GIS-Based Machine Learning Software for Seismic Vulnerability Assessment. Applied Sciences (Switzerland), 2019, 9, 3495.	1.3	42

#	Article	IF	CITATIONS
127	Development of Hybrid Machine Learning Models for Predicting the Critical Buckling Load of I-Shaped Cellular Beams. Applied Sciences (Switzerland), 2019, 9, 5458.	1.3	42
128	Quantification of Uncertainties on the Critical Buckling Load of Columns under Axial Compression with Uncertain Random Materials. Materials, 2019, 12, 1828.	1.3	40
129	GIS Based Novel Hybrid Computational Intelligence Models for Mapping Landslide Susceptibility: A Case Study at Da Lat City, Vietnam. Sustainability, 2019, 11, 7118.	1.6	40
130	A Novel Intelligence Approach of a Sequential Minimal Optimization-Based Support Vector Machine for Landslide Susceptibility Mapping. Sustainability, 2019, 11, 6323.	1.6	37
131	Novel Ensemble Landslide Predictive Models Based on the Hyperpipes Algorithm: A Case Study in the Nam Dam Commune, Vietnam. Applied Sciences (Switzerland), 2020, 10, 3710.	1.3	37
132	Evaluating Slope Deformation of Earth Dams Due to Earthquake Shaking Using MARS and GMDH Techniques. Applied Sciences (Switzerland), 2020, 10, 1486.	1.3	36
133	GIS based frequency ratio method for landslide susceptibility mapping at Da Lat City, Lam Dong province, Vietnam. Vietnam Journal of Earth Sciences, 2020, 42, 55-66.	1.0	35
134	Particulate matter concentration from open-cut coal mines: A hybrid machine learning estimation. Environmental Pollution, 2020, 263, 114517.	3.7	32
135	NaÃ ⁻ ve Bayes ensemble models for groundwater potential mapping. Ecological Informatics, 2021, 64, 101389.	2.3	32
136	Development of an Artificial Intelligence Approach for Prediction of Consolidation Coefficient of Soft Soil: A Sensitivity Analysis. Open Construction and Building Technology Journal, 2019, 13, 178-188.	0.3	32
137	Improved strength prediction of cemented paste backfill using a novel model based on adaptive neuro fuzzy inference system and artificial bee colony. Construction and Building Materials, 2021, 284, 122857.	3.2	31
138	GIS-based ensemble computational models for flood susceptibility prediction in the Quang Binh Province, Vietnam. Journal of Hydrology, 2021, 599, 126500.	2.3	31
139	Machine Learning Methods of Kernel Logistic Regression and Classification and Regression Trees for Landslide Susceptibility Assessment at Part of Himalayan Area, India. Indian Journal of Science and Technology, 2018, 11, 1-10.	0.5	30
140	GIS-based ensemble soft computing models for landslide susceptibility mapping. Advances in Space Research, 2020, 66, 1303-1320.	1.2	30
141	Stochastic Modeling of Groundwater Fluoride Contamination: Introducing Lazy Learners. Ground Water, 2020, 58, 723-734.	0.7	29
142	Monthly suspended sediment load prediction using artificial intelligence: testing of a new random subspace method. Hydrological Sciences Journal, 2020, 65, 2116-2127.	1.2	29
143	A novel ensemble learning based on Bayesian Belief Network coupled with an extreme learning machine for flash flood susceptibility mapping. Engineering Applications of Artificial Intelligence, 2020, 96, 103971.	4.3	29
144	Seepage Analysis in Short Embankments Using Developing a Metaheuristic Method Based on Governing Equations. Applied Sciences (Switzerland), 2020, 10, 1761.	1.3	28

#	Article	IF	CITATIONS
145	Ensemble machine learning models based on Reduced Error Pruning Tree for prediction of rainfall-induced landslides. International Journal of Digital Earth, 2021, 14, 575-596.	1.6	28
146	Improving pressure drops estimation of fresh cemented paste backfill slurry using a hybrid machine learning method. Minerals Engineering, 2021, 163, 106790.	1.8	28
147	Flash flood susceptibility prediction mapping for a road network using hybrid machine learning models. Natural Hazards, 2021, 109, 1247-1270.	1.6	28
148	Investigating the Applications of Machine Learning Techniques to Predict the Rock Brittleness Index. Applied Sciences (Switzerland), 2020, 10, 1691.	1.3	27
149	A Novel Hybrid Model Based on a Feedforward Neural Network and One Step Secant Algorithm for Prediction of Load-Bearing Capacity of Rectangular Concrete-Filled Steel Tube Columns. Molecules, 2020, 25, 3486.	1.7	26
150	Parametric Investigation of Particle Swarm Optimization to Improve the Performance of the Adaptive Neuro-Fuzzy Inference System in Determining the Buckling Capacity of Circular Opening Steel Beams. Materials, 2020, 13, 2210.	1.3	26
151	A Novel Classifier Based on Composite Hyper-cubes on Iterated Random Projections for Assessment of Landslide Susceptibility. Journal of the Geological Society of India, 2018, 91, 355-362.	0.5	25
152	Using Field-Based Monitoring to Enhance the Performance of Rainfall Thresholds for Landslide Warning. Water (Switzerland), 2020, 12, 3453.	1.2	25
153	Framework of Spatial Flood Risk Assessment for a Case Study in Quang Binh Province, Vietnam. Sustainability, 2020, 12, 3058.	1.6	24
154	Quadratic Discriminant Analysis Based Ensemble Machine Learning Models for Groundwater Potential Modeling and Mapping. Water Resources Management, 2021, 35, 4415-4433.	1.9	24
155	Locally weighted learning based hybrid intelligence models for groundwater potential mapping and modeling: A case study at Gia Lai province, Vietnam. Geoscience Frontiers, 2021, 12, 101154.	4.3	24
156	Groundwater Potential Mapping Using <scp>GIS</scp> â€Based Hybrid Artificial Intelligence Methods. Ground Water, 2021, 59, 745-760.	0.7	23
157	A Hybrid Intelligence Approach to Enhance the Prediction Accuracy of Local Scour Depth at Complex Bridge Piers. Sustainability, 2020, 12, 1063.	1.6	22
158	Flash-flood potential index estimation using fuzzy logic combined with deep learning neural network, naìve Bayes, XGBoost and classification and regression tree. Geocarto International, 2022, 37, 6780-6807.	1.7	22
159	A new development of ANFIS-Based Henry gas solubility optimization technique for prediction of soil shear strength. Transportation Geotechnics, 2021, 29, 100579.	2.0	22
160	Estimation of Soil Cohesion Using Machine Learning Method: A Random Forest Approach. Advances in Civil Engineering, 2021, 2021, 1-14.	0.4	21
161	On Random Subspace Optimization-Based Hybrid Computing Models Predicting the California Bearing Ratio of Soils. Materials, 2021, 14, 6516.	1.3	21
162	Surrogate models for the compressive strength mapping of cement mortar materials. Soft Computing, 2021, 25, 6347-6372.	2.1	20

#	Article	IF	CITATIONS
163	Landslide susceptibility mapping using state-of-the-art machine learning ensembles. Geocarto International, 2022, 37, 5175-5200.	1.7	20
164	Effects of Inter-Basin Water Transfer on Water Flow Condition of Destination Basin. Sustainability, 2020, 12, 338.	1.6	19
165	Flash-flood propagation susceptibility estimation using weights of evidence and their novel ensembles with multicriteria decision making and machine learning. Geocarto International, 2022, 37, 8361-8393.	1.7	19
166	Shallow landslide susceptibility mapping: A comparison between classification and regression tree and reduced error pruning tree algorithms. Vietnam Journal of Earth Sciences, 2020, 42, .	1.0	18
167	Landslide Susceptibility Assessment at a Part of Uttarakhand Himalaya, India using GIS – based Statistical Approach of Frequency Ratio Method. International Journal of Engineering Research & Technology, 2015, V4, .	0.2	18
168	Cost-Effective Approaches Based on Machine Learning to Predict Dynamic Modulus of Warm Mix Asphalt with High Reclaimed Asphalt Pavement. Materials, 2020, 13, 3272.	1.3	17
169	GIS-Based Soft Computing Models for Landslide Susceptibility Mapping: A Case Study of Pithoragarh District, Uttarakhand State, India. Mathematical Problems in Engineering, 2021, 2021, 1-19.	0.6	17
170	A practical approach to flood hazard, vulnerability, and risk assessing and mapping for Quang Binh province, Vietnam. Environment, Development and Sustainability, 2023, 25, 1101-1130.	2.7	17
171	Design of robust control based on linear matrix inequality and a novel hybrid PSO search technique for autonomous underwater vehicle. Applied Ocean Research, 2020, 101, 102231.	1.8	16
172	Prediction of Shear Strength of Soil Using Direct Shear Test and Support Vector Machine Model. Open Construction and Building Technology Journal, 2020, 14, 41-50.	0.3	16
173	Flood-prone area mapping using machine learning techniques: a case study of Quang Binh province, Vietnam. Natural Hazards, 2021, 108, 3229-3251.	1.6	15
174	Prediction of Shear Strength of Soil Using Direct Shear Test and Support Vector Machine Model. Open Construction and Building Technology Journal, 2020, 14, 268-277.	0.3	14
175	Performance assessment of artificial neural network using chi-square and backward elimination feature selection methods for landslide susceptibility analysis. Environmental Earth Sciences, 2021, 80, 1.	1.3	14
176	Characterization of soybeans and calibration of their DEM input parameters. Particulate Science and Technology, 2021, 39, 530-548.	1.1	13
177	Development of Artificial Neural Network for prediction of radon dispersion released from Sinquyen Mine, Vietnam. Environmental Pollution, 2021, 282, 116973.	3.7	13
178	Application of Classification and Regression Trees for Spatial Prediction of Rainfall-Induced Shallow Landslides in the Uttarakhand Area (India) Using GIS. Sustainable Development Goals Series, 2018, , 159-170.	0.2	12
179	Artificial Intelligence-Based Model for the Prediction of Dynamic Modulus of Stone Mastic Asphalt. Applied Sciences (Switzerland), 2020, 10, 5242.	1.3	12
180	Spatial prediction of landslides along National Highway-6, Hoa Binh province, Vietnam using novel hybrid models. Geocarto International, 2022, 37, 5201-5226.	1.7	12

#	Article	IF	CITATIONS
181	Investigation on factors affecting early strength of high-performance concrete by Gaussian Process Regression. PLoS ONE, 2022, 17, e0262930.	1.1	12
182	Predicting sustainable arsenic mitigation using machine learning techniques. Ecotoxicology and Environmental Safety, 2022, 232, 113271.	2.9	12
183	Flood susceptibility evaluation through deep learning optimizer ensembles and GIS techniques. Journal of Environmental Management, 2022, 316, 115316.	3.8	12
184	Improving Voting Feature Intervals for Spatial Prediction of Landslides. Mathematical Problems in Engineering, 2020, 2020, 1-15.	0.6	11
185	Investigating the effect of jointed environment on the cracked concrete arch dam in 3D conditions using FEM. Bulletin of Engineering Geology and the Environment, 2021, 80, 55-70.	1.6	10
186	Backpropagation Neural Network-Based Machine Learning Model for Prediction of Soil Friction Angle. Mathematical Problems in Engineering, 2020, 2020, 1-11.	0.6	10
187	Daily Rainfall Prediction Using Nonlinear Autoregressive Neural Network. Lecture Notes in Networks and Systems, 2020, , 213-221.	0.5	9
188	A Comparison of Gaussian Process and M5P for Prediction of Soil Permeability Coefficient. Scientific Programming, 2021, 2021, 1-13.	0.5	9
189	A Comparative Study of Soft Computing Models for Prediction of Permeability Coefficient of Soil. Mathematical Problems in Engineering, 2021, 2021, 1-11.	0.6	9
190	Evaluation of Shannon Entropy and Weights of Evidence Models in Landslide Susceptibility Mapping for the Pithoragarh District of Uttarakhand State, India. Advances in Civil Engineering, 2022, 2022, 1-16.	0.4	9
191	A Novel Hybrid Model of Rotation Forest Based Functional Trees for Landslide Susceptibility Mapping: A Case Study at Kon Tum Province, Vietnam. , 2018, , 186-201.		8
192	Recent tectonics, geodynamics and seismotectonics in the Ninh Thuan Nuclear Power plants and surrounding regions, South Vietnam. Journal of Asian Earth Sciences, 2020, 187, 104080.	1.0	8
193	Exploring novel hybrid soft computing models for landslide susceptibility mapping in Son La hydropower reservoir basin. Geomatics, Natural Hazards and Risk, 2021, 12, 1688-1714.	2.0	8
194	Landslide Susceptibility Mapping Using Single Machine Learning Models: A Case Study from Pithoragarh District, India. Advances in Civil Engineering, 2021, 2021, 1-19.	0.4	7
195	Estimation of the undrained shear strength of sensitive clays using optimized inference intelligence system. Neural Computing and Applications, 2022, 34, 7835.	3.2	7
196	Soil Unconfined Compressive Strength Prediction Using Random Forest (RF) Machine Learning Model. Open Construction and Building Technology Journal, 2020, 14, 278-285.	0.3	6
197	Hybrid Model: Teaching Learning-Based Optimization of Artificial Neural Network (TLBO-ANN) for the Prediction of Soil Permeability Coefficient. Mathematical Problems in Engineering, 2022, 2022, 1-9.	0.6	6
198	A machine learning approach in spatial predicting of landslides and flash flood susceptible zones for a road network. Modeling Earth Systems and Environment, 2022, 8, 4341-4357.	1.9	6

#	Article	IF	CITATIONS
199	Stacking state-of-the-art ensemble for flash-flood potential assessment. Geocarto International, 2022, 37, 13812-13838.	1.7	6
200	Development and Identification of Working Parameters for a Lychee Peeling Machine Combining Rollers and a Pressing Belt. AgriEngineering, 2019, 1, 550-566.	1.7	5
201	Joint frequency analysis and uncertainty estimation of coupled rainfall–runoff series relying on historical and simulated data. Hydrological Sciences Journal, 2020, 65, 455-469.	1.2	5
202	A Novel Hybrid Intelligent Approach of Random Subspace Ensemble and Reduced Error Pruning Trees for Landslide Susceptibility Modeling: A Case Study at Mu Cang Chai District, Yen Bai Province, Viet Nam. , 2018, , 255-269.		4
203	Analyzing travel behavior in Hanoi using Support Vector Machine. Transportation Planning and Technology, 2021, 44, 843-859.	0.9	4
204	Using Decision Tree J48 Based Machine Learning Algorithm for Flood Susceptibility Mapping: A Case Study in Quang Binh Province, Vietnam. Lecture Notes in Civil Engineering, 2022, , 1927-1935.	0.3	4
205	Application of Artificial Intelligence in Predicting Groundwater Contaminants. , 2021, , 71-105.		3
206	Designing of concrete pavement expansion joints based on climate conditions of Vietnam. Journal of the Mechanical Behavior of Materials, 2019, 28, 62-67.	0.7	2
207	Spatial Prediction of Rainfall Induced Shallow Landslides Using Adaptive-Network-Based Fuzzy Inference System and Particle Swarm Optimization: A Case Study at the Uttarakhand Area, India. , 2018, , 224-238.		2
208	A Robustness Analysis of Different Nonlinear Autoregressive Networks Using Monte Carlo Simulations for Predicting High Fluctuation Rainfall. Lecture Notes in Networks and Systems, 2020, , 205-212.	0.5	2
209	Dimensionality reduction and prediction of soil consolidation coefficient using random forest coupling with Relief algorithm. Frontiers of Structural and Civil Engineering, 0, , 1.	1.2	1
210	Identification, Monitoring, and Assessment of an Active Landslide in Tavan-Hauthao, Sapa, Laocai, Vietnam – A Multidisciplinary Approach. Journal of Disaster Research, 2021, 16, 501-511.	0.4	0