Xiaoyanzhang Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2254390/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dielectricâ€Modulated Biosensing with Ultrahighâ€Frequencyâ€Operated Graphene Fieldâ€Effect Transistors. Advanced Materials, 2022, 34, e2106666.	11.1	16
2	Porous ceramics with nearâ€zero shrinkage and low thermal conductivity from hazardous secondary aluminum dross. Journal of the American Ceramic Society, 2022, 105, 3197-3210.	1.9	18
3	Mullite ceramic foams with tunable pores from dual-phase sol nanoparticle-stabilized foams. Journal of the European Ceramic Society, 2022, 42, 1703-1711.	2.8	16
4	Phase evolution and properties of glass ceramic foams prepared by bottom ash, fly ash and pickling sludge. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 563-573.	2.4	16
5	Dielectricâ€Modulated Biosensing with Ultrahighâ€Frequencyâ€Operated Graphene Fieldâ€Effect Transistors (Adv. Mater. 7/2022). Advanced Materials, 2022, 34, .	11.1	1
6	Exploring optical and electrical gas detection based on zinc–tetra-phenyl-porphyrin sensitizer. Analytical Sciences, 2022, 38, 833-842.	0.8	2
7	Directly growing nanowire-assembled nanofibrous ceramic foams with multi-lamellar structure via freeze-casting process. Journal of the European Ceramic Society, 2021, 41, 1041-1047.	2.8	11
8	Graphene Oxide/Hexylamine Superlattice Fieldâ€Effect Biochemical Sensors. Advanced Functional Materials, 2021, 31, 2010563.	7.8	10
9	Highly porous ceramics production using slags from smelting of spent automotive catalysts. Resources, Conservation and Recycling, 2021, 166, 105373.	5.3	26
10	Migration, transformation and solidification/stabilization mechanisms of heavy metals in glass-ceramics made from MSWI fly ash and pickling sludge. Ceramics International, 2021, 47, 21599-21609.	2.3	25
11	Three-Dimensional Reticulated, Spongelike, Resilient Aerogels Assembled by SiC/Si ₃ N ₄ Nanowires. Nano Letters, 2021, 21, 4167-4175.	4.5	34
12	Biochemical Sensors: Graphene Oxide/Hexylamine Superlattice Fieldâ€Effect Biochemical Sensors (Adv.) Tj ETQq	0 0 0 rgBT	/Overlock 10
13	Ultrasensitive Fieldâ€Effect Biosensors Enabled by the Unique Electronic Properties of Graphene. Small, 2020, 16, e1902820.	5.2	75
14	3D printing boehmite gel foams into lightweight porous ceramics with hierarchical pore structure. Journal of the European Ceramic Society, 2020, 40, 930-934.	2.8	47
15	Direct coagulation casting of silicon carbide suspension via polyelectrolyte dispersant crosslink reaction. International Journal of Applied Ceramic Technology, 2020, 17, 274-284.	1.1	3
16	Ultrastrong Hierarchical Porous Materials via Colloidal Assembly and Oxidation of Metal Particles. Advanced Functional Materials, 2020, 30, 2003550.	7.8	31

17	Hierarchically porous ceria with tunable pore structure from particle-stabilized foams. Journal of the European Ceramic Society, 2020, 40, 4366-4372.	2.8	20

18<i>In situ</i> coagulation of yttriaâ€stabilized zirconia ceramic with enhancement of green body via
polyvinyl pyrrolidone crosslink. Journal of Applied Polymer Science, 2020, 137, 48889.1.32

#	Article	IF	CITATIONS
19	Silica foams with ultraâ€large specific surface area structured by hollow mesoporous silica spheres. Journal of the American Ceramic Society, 2019, 102, 955-961.	1.9	25
20	Novel microâ€spherical Si ₃ N ₄ nanowire sponges from carbonâ€doped silica sol foams via reverse templating method. Journal of the American Ceramic Society, 2019, 102, 962-969.	1.9	15
21	Effect of zeta potential on properties of foamed colloidal suspension. Journal of the European Ceramic Society, 2019, 39, 574-583.	2.8	56
22	Low ost, green synthesis and adsorption properties for dyes of novel porous gangue/palygorskite composite microspheres. International Journal of Applied Ceramic Technology, 2019, 16, 1510-1524.	1.1	5
23	Si 3 N 4 Hollow Microsphere Toughened Porous Ceramics from Direct Coagulation Method via Dispersant Reaction. Advanced Engineering Materials, 2019, 21, 1800858.	1.6	6
24	Ultrahighâ€ s trength alumina ceramic foams via gelation of foamed boehmite sol. Journal of the American Ceramic Society, 2019, 102, 5503-5513.	1.9	29
25	Porous Si3N4-based ceramics with uniform pore structure originated from single-shell hollow microspheres. Journal of Materials Science, 2019, 54, 4484-4494.	1.7	13
26	Aerogelâ€like ceramic foams with superâ€high porosity and nanoscale cell wall from sol nanoparticles stabilized foams. Journal of the American Ceramic Society, 2019, 102, 3753-3762.	1.9	14
27	In situ synthesis of threeâ€dimensional nanofiberâ€knitted ceramic foams via reactive sintering silicon foams. Journal of the American Ceramic Society, 2019, 102, 2245-2250.	1.9	13
28	Preparation of Al2O3-Si3N4 porous ceramics with a cactus-like architecture for potential filters applications. Ceramics International, 2019, 45, 6581-6584.	2.3	14
29	Ultralight and high-strength bulk alumina/zirconia composite ceramic foams through direct foaming method. Ceramics International, 2019, 45, 1464-1467.	2.3	39
30	Optimal design on the high-temperature mechanical properties of porous alumina ceramics based on fractal dimension analysis. Journal of Advanced Ceramics, 2018, 7, 89-98.	8.9	38
31	Optimal design on the mechanical and thermal properties of porous alumina ceramics based on fractal dimension analysis. International Journal of Applied Ceramic Technology, 2018, 15, 643-652.	1.1	6
32	Highly porous barium strontium titanate (<scp>BST</scp>) ceramic foams with low dielectric constant from particleâ€stabilized foams. Journal of the American Ceramic Society, 2018, 101, 1737-1746.	1.9	23
33	Novel mullite ceramic foams with high porosity and strength using only fly ash hollow spheres as raw material. Journal of the European Ceramic Society, 2018, 38, 2035-2042.	2.8	77
34	Design and formulation of polyurethane foam used for porous alumina ceramics. Journal of Polymer Research, 2018, 25, 1.	1.2	21
35	A one-step method for pore expansion and enlargement of hollow cavity of hollow periodic mesoporous organosilica spheres. Journal of Materials Science, 2017, 52, 2868-2878.	1.7	15
36	Direct Coagulation Casting of Alumina Suspension from Calcium Citrate Assisted by pH Shift. Journal of the American Ceramic Society, 2014, 97, 1048-1053.	1.9	27