Xiaoyanzhang Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2254390/publications.pdf

Version: 2024-02-01

36	789	17 h-index	27
papers	citations		g-index
36	36	36	626
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Novel mullite ceramic foams with high porosity and strength using only fly ash hollow spheres as raw material. Journal of the European Ceramic Society, 2018, 38, 2035-2042.	5.7	77
2	Ultrasensitive Fieldâ€Effect Biosensors Enabled by the Unique Electronic Properties of Graphene. Small, 2020, 16, e1902820.	10.0	75
3	Effect of zeta potential on properties of foamed colloidal suspension. Journal of the European Ceramic Society, 2019, 39, 574-583.	5.7	56
4	3D printing boehmite gel foams into lightweight porous ceramics with hierarchical pore structure. Journal of the European Ceramic Society, 2020, 40, 930-934.	5.7	47
5	Ultralight and high-strength bulk alumina/zirconia composite ceramic foams through direct foaming method. Ceramics International, 2019, 45, 1464-1467.	4.8	39
6	Optimal design on the high-temperature mechanical properties of porous alumina ceramics based on fractal dimension analysis. Journal of Advanced Ceramics, 2018, 7, 89-98.	17.4	38
7	Three-Dimensional Reticulated, Spongelike, Resilient Aerogels Assembled by SiC/Si ₃ N ₄ Nanowires. Nano Letters, 2021, 21, 4167-4175.	9.1	34
8	Ultrastrong Hierarchical Porous Materials via Colloidal Assembly and Oxidation of Metal Particles. Advanced Functional Materials, 2020, 30, 2003550.	14.9	31
9	Ultrahighâ€strength alumina ceramic foams via gelation of foamed boehmite sol. Journal of the American Ceramic Society, 2019, 102, 5503-5513.	3.8	29
10	Direct Coagulation Casting of Alumina Suspension from Calcium Citrate Assisted by pH Shift. Journal of the American Ceramic Society, 2014, 97, 1048-1053.	3.8	27
11	Highly porous ceramics production using slags from smelting of spent automotive catalysts. Resources, Conservation and Recycling, 2021, 166, 105373.	10.8	26
12	Silica foams with ultraâ€large specific surface area structured by hollow mesoporous silica spheres. Journal of the American Ceramic Society, 2019, 102, 955-961.	3.8	25
13	Migration, transformation and solidification/stabilization mechanisms of heavy metals in glass-ceramics made from MSWI fly ash and pickling sludge. Ceramics International, 2021, 47, 21599-21609.	4.8	25
14	Highly porous barium strontium titanate (<scp>BST</scp>) ceramic foams with low dielectric constant from particleâ€stabilized foams. Journal of the American Ceramic Society, 2018, 101, 1737-1746.	3.8	23
15	Design and formulation of polyurethane foam used for porous alumina ceramics. Journal of Polymer Research, 2018, 25, 1.	2.4	21
16	Hierarchically porous ceria with tunable pore structure from particle-stabilized foams. Journal of the European Ceramic Society, 2020, 40, 4366-4372.	5.7	20
17	Porous ceramics with nearâ€∉ero shrinkage and low thermal conductivity from hazardous secondary aluminum dross. Journal of the American Ceramic Society, 2022, 105, 3197-3210.	3.8	18
18	Dielectricâ€Modulated Biosensing with Ultrahighâ€Frequencyâ€Operated Graphene Fieldâ€Effect Transistors. Advanced Materials, 2022, 34, e2106666.	21.0	16

#	Article	IF	Citations
19	Mullite ceramic foams with tunable pores from dual-phase sol nanoparticle-stabilized foams. Journal of the European Ceramic Society, 2022, 42, 1703-1711.	5.7	16
20	Phase evolution and properties of glass ceramic foams prepared by bottom ash, fly ash and pickling sludge. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 563-573.	4.9	16
21	A one-step method for pore expansion and enlargement of hollow cavity of hollow periodic mesoporous organosilica spheres. Journal of Materials Science, 2017, 52, 2868-2878.	3.7	15
22	Novel microâ€spherical Si ₃ N ₄ nanowire sponges from carbonâ€doped silica sol foams via reverse templating method. Journal of the American Ceramic Society, 2019, 102, 962-969.	3.8	15
23	Aerogelâ€like ceramic foams with superâ€high porosity and nanoscale cell wall from sol nanoparticles stabilized foams. Journal of the American Ceramic Society, 2019, 102, 3753-3762.	3.8	14
24	Preparation of Al2O3-Si3N4 porous ceramics with a cactus-like architecture for potential filters applications. Ceramics International, 2019, 45, 6581-6584.	4.8	14
25	Porous Si3N4-based ceramics with uniform pore structure originated from single-shell hollow microspheres. Journal of Materials Science, 2019, 54, 4484-4494.	3.7	13
26	In situ synthesis of threeâ€dimensional nanofiberâ€knitted ceramic foams via reactive sintering silicon foams. Journal of the American Ceramic Society, 2019, 102, 2245-2250.	3.8	13
27	Directly growing nanowire-assembled nanofibrous ceramic foams with multi-lamellar structure via freeze-casting process. Journal of the European Ceramic Society, 2021, 41, 1041-1047.	5.7	11
28	Graphene Oxide/Hexylamine Superlattice Fieldâ€Effect Biochemical Sensors. Advanced Functional Materials, 2021, 31, 2010563.	14.9	10
29	Optimal design on the mechanical and thermal properties of porous alumina ceramics based on fractal dimension analysis. International Journal of Applied Ceramic Technology, 2018, 15, 643-652.	2.1	6
30	Si 3 N 4 Hollow Microsphere Toughened Porous Ceramics from Direct Coagulation Method via Dispersant Reaction. Advanced Engineering Materials, 2019, 21, 1800858.	3.5	6
31	Lowâ€cost, green synthesis and adsorption properties for dyes of novel porous gangue/palygorskite composite microspheres. International Journal of Applied Ceramic Technology, 2019, 16, 1510-1524.	2.1	5
32	Direct coagulation casting of silicon carbide suspension via polyelectrolyte dispersant crosslink reaction. International Journal of Applied Ceramic Technology, 2020, 17, 274-284.	2.1	3
33	<i>In situ</i> coagulation of yttriaâ€stabilized zirconia ceramic with enhancement of green body via polyvinyl pyrrolidone crosslink. Journal of Applied Polymer Science, 2020, 137, 48889.	2.6	2
34	Exploring optical and electrical gas detection based on zinc–tetra-phenyl-porphyrin sensitizer. Analytical Sciences, 2022, 38, 833-842.	1.6	2
35	Dielectricâ€Modulated Biosensing with Ultrahighâ€Frequencyâ€Operated Graphene Fieldâ€Effect Transistors (Adv. Mater. 7/2022). Advanced Materials, 2022, 34, .	21.0	1

Biochemical Sensors: Graphene Oxide/Hexylamine Superlattice Fieldâ€Effect Biochemical Sensors (Adv.) Tj ETQq0 0.0 rgBT /Oyerlock 10