
Olga Polyakova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2253554/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Compounds of Group 14 Elements with an Element–Element (E = Si, Ge, Sn) Bond: Effect of the Nature of the Element Atom. Organometallics, 2015, 34, 2765-2774.	1.1	28
2	Palladium nanoparticles–polypyrrole composite as an efficient catalyst for cyanation of aryl halides. Electrochimica Acta, 2014, 122, 289-295.	2.6	27
3	Complexes of Cobalt(II) Iodide with Pyridine and Redox Active 1,2-Bis(arylimino)acenaphthene: Synthesis, Structure, Electrochemical, and Single Ion Magnet Properties. Molecules, 2020, 25, 2054.	1.7	25
4	Chiral Nickel(II) Binuclear Complexes: Targeted Diastereoselective Electrosynthesis. Organometallics, 2014, 33, 4639-4654.	1.1	23
5	New heterobimetallic Cu(I)–Pd(II)-containing polymer complexes: Electrochemical synthesis and application in catalysis. Electrochimica Acta, 2011, 56, 3666-3672.	2.6	20
6	Stereoselective Electrosynthesis of βâ€Hydroxyâ€Î±â€Amino Acids in the Form of Ni ^{II} â€Schiffâ€Base Complexes. European Journal of Organic Chemistry, 2019, 2019, 3174-3182.	² 1.2	17
7	Copperâ€Assisted Amination of Boronic Acids for Synthesis of Bulky Diarylamines: Experimental and DFT Study. Chemistry - A European Journal, 2017, 23, 12575-12584.	1.7	16
8	New Cu(I) complexes with biquinolyl-containing polymer ligands as electrocatalysts for O2 activation in the oxidation of alcohols. Electrochimica Acta, 2008, 53, 3960-3972.	2.6	15
9	Individual (^{f,t} A)―and (^{f,t} C)â€Fullereneâ€Based Nickel(II) Glycinates: Protected Chiral Amino Acids Directly Linked to a Chiral Ï€â€Electron System. Angewandte Chemie - International Edition, 2017, 56, 2704-2708.	7.2	15
10	Twisted DiaryInitroxides: An Efficient Route for Radical Stabilization. European Journal of Organic Chemistry, 2017, 2017, 4726-4735.	1.2	15
11	New Cu(I) complexes with 2,2′-biquinolyl and 2,2′-quinolyl-pyridine containing polymer ligands as electrocatalysts for O2 activation in the oxidation of aliphatic amines. Electrochimica Acta, 2009, 54, 1444-1451.	2.6	14
12	Chameleonic Behavior of the αâ€Methylcyclopropyl Group and Its Throughâ€Space Interactions: A Route to Stabilized Three Redox States in Diarylnitroxides. Chemistry - A European Journal, 2020, 26, 6793-6804.	1.7	12
13	Competitive Routes for Electrochemical Oxidation of Substituted Diarylamines: the Guidelines. ChemElectroChem, 2018, 5, 3391-3410.	1.7	11
14	Solvent switchable Cu ^{II} complexes. New Journal of Chemistry, 2014, 38, 709-716.	1.4	10
15	Cerium bis(tetradiazepinoporphyrazinate): synthesis and peculiarities of spectral and electrochemical behavior. New Journal of Chemistry, 2015, 39, 5797-5804.	1.4	9
16	Noncovalent interactions within 3D molecular structure of diastereoisomers: A background for stereodependent redox activity. Electrochimica Acta, 2019, 306, 568-574.	2.6	9
17	Which Stereoinductor Is Better for Asymmetric Functionalization of αâ€Amino Acids in a Nickel(II) Coordination Environment? Experimental and DFT Considerations. Chemistry - A European Journal, 2020, 26, 7074-7082.	1.7	9
18	Carbon―and SO ₂ ‣ocked Diarylnitroxides: Quantum Chemical Consideration, Synthesis, and Electrochemistry. European Journal of Organic Chemistry, 2019, 2019, 6225-6231.	1.2	8

Olga Polyakova

#	Article	lF	CITATIONS
19	Electrochemical Transformations of Chiral Ni(II) Schiff Base Derivative of Serine: A Route to Novel Structures. ChemElectroChem, 2020, 7, 3361-3367.	1.7	8
20	Polymer biquinolyl-containing complexes of Pd(ii) as efficient catalysts for cyanation of aryl and vinyl halides with K4Fe(CN)6. New Journal of Chemistry, 2016, 40, 10465-10473.	1.4	7
21	Tightly Bound Doubleâ€Caged [60]Fullerene Derivatives with Enhanced Solubility: Structural Features and Application in Solar Cells. Chemistry - an Asian Journal, 2017, 12, 1075-1086.	1.7	7
22	Coreyâ€Ð¡haykovsky cyclopropanation of dehydroalanine in the Ni(II) coordination environment: Electrochemical vs. chemical activation. Electrochimica Acta, 2022, 409, 139980.	2.6	7
23	Pyrrolizidine and cyclobutane bridged double-caged fullerene derivatives. New Journal of Chemistry, 2013, 37, 804.	1.4	6
24	Metal complexes of diaryltetrabenzodiazaporphyrins. ChemistrySelect, 2016, 1, 360-374.	0.7	6
25	Solvent-triggered stereoselectivity of α,α-cyclopropanation of amino acids in the Ni(<scp>ii</scp>) chiral coordination environment. Dalton Transactions, 2020, 49, 8636-8644.	1.6	5
26	Electrochemical Formation of the Redox-Active Metal-Containing Polymers for Catalytic and Electrocatalytic Applications. ECS Transactions, 2011, 35, 1-17.	0.3	3
27	Individual (^{f,t} A)―and (^{f,t} C)â€Fullereneâ€Based Nickel(II) Glycinates: Protected Chiral Amino Acids Directly Linked to a Chiral Ï€â€Electron System. Angewandte Chemie, 2017, 129, 2748-2752.	1.6	3
28	Sol-gel-modified membranes for all-organic battery based on bis-(tert-butylphenyl)nitroxide. Colloid and Polymer Science, 2019, 297, 317-323.	1.0	3
29	Diastereomeric Ni(II) Schiff-base cysteine derivatives: Non-covalent interactions and redox activity. Electrochimica Acta, 2021, 388, 138537.	2.6	3
30	Pyridine ontaining Donorâ€Acceptor Diarylnitroxides: Noncovalent Stabilization of the Redox States. ChemPlusChem, 2022, 87, e202100508.	1.3	3
31	Pdâ€Polypyrrole Nanocomposite in Environmentally Friendly Synthesis of Vinylnitriles Using K ₄ Fe(CN) ₆ . ChemistrySelect, 2018, 3, 4237-4243.	0.7	2
32	Diarylamine/diarylnitroxide cycle: quantum chemical and electrochemical estimation. Heliyon, 2019, 5, e02735.	1.4	1