Johan A Slotman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2253540/publications.pdf

Version: 2024-02-01

430874 501196 1,017 42 18 28 citations g-index h-index papers 49 49 49 1869 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	RNA polymerase II is required for spatial chromatin reorganization following exit from mitosis. Science Advances, 2021, 7, eabg8205.	10.3	70
2	Dynamics and distribution of paxillin, vinculin, zyxin and VASP depend on focal adhesion location and orientation. Scientific Reports, 2019, 9, 10460.	3.3	63
3	Actomyosin-dependent dynamic spatial patterns of cytoskeletal components drive mesoscale podosome organization. Nature Communications, 2016, 7, 13127.	12.8	57
4	VASP, zyxin and TES are tension-dependent members of Focal Adherens Junctions independent of the \hat{l}_{\pm} -catenin-vinculin module. Scientific Reports, 2015, 5, 17225.	3.3	56
5	Modular actin nano-architecture enables podosome protrusion and mechanosensing. Nature Communications, 2019, 10, 5171.	12.8	56
6	Correlation profiling of brain sub-cellular proteomes reveals co-assembly of synaptic proteins and subcellular distribution. Scientific Reports, 2017, 7, 12107.	3.3	55
7	Redundant and specific roles of cohesin STAG subunits in chromatin looping and transcriptional control. Genome Research, 2020, 30, 515-527.	5. 5	54
8	Group 1 metabotropic glutamate receptors 1 and 5 form a protein complex in mouse hippocampus and cortex. Proteomics, 2016, 16, 2698-2705.	2.2	52
9	The formins FHOD1 and INF2 regulate inter- and intra-structural contractility of podosomes. Journal of Cell Science, 2016, 129, 298-313.	2.0	51
10	Local axonal morphology guides the topography of interneuron myelination in mouse and human neocortex. ELife, 2019, 8, .	6.0	51
11	Structured illumination microscopy with noise-controlled image reconstructions. Nature Methods, 2021, 18, 821-828.	19.0	40
12	Ubc13 and COOH Terminus of Hsp70-interacting Protein (CHIP) Are Required for Growth Hormone Receptor Endocytosis. Journal of Biological Chemistry, 2012, 287, 15533-15543.	3.4	31
13	Three-dimensional analysis reveals two major architectural subgroups of prostate cancer growth patterns. Modern Pathology, 2019, 32, 1032-1041.	5 . 5	30
14	Growth Hormone Receptor Regulation in Cancer and Chronic Diseases. Frontiers in Endocrinology, 2020, 11, 597573.	3.5	30
15	Super-resolution imaging of RAD51 and DMC1 in DNA repair foci reveals dynamic distribution patterns in meiotic prophase. PLoS Genetics, 2020, 16, e1008595.	3 . 5	27
16	Image filtering in structured illumination microscopy using the Lukosz bound. Optics Express, 2013, 21, 24431.	3.4	25
17	Specificity, location and function of \hat{l}^2 TrCP isoforms and their splice variants. Cellular Signalling, 2011, 23, 641-647.	3.6	22
18	Heterogeneous clinical phenotypes and cerebral malformations reflected by rotatin cellular dynamics. Brain, 2019, 142, 867-884.	7.6	22

#	Article	IF	CITATIONS
19	Identification of the ubiquitin ligase Triad1 as a regulator of endosomal transport. Biology Open, 2012, 1, 607-614.	1.2	21
20	CDK1-mediated phosphorylation at H2B serine 6 is required for mitotic chromosome segregation. Journal of Cell Biology, 2019, 218, 1164-1181.	5.2	21
21	Acetylcholine Receptor (AChR) Clustering Is Regulated Both by Glycogen Synthase Kinase $3\hat{l}^2$ (GSK3 \hat{l}^2)-dependent Phosphorylation and the Level of CLIP-associated Protein 2 (CLASP2) Mediating the Capture of Microtubule Plus-ends. Journal of Biological Chemistry, 2014, 289, 30857-30867.	3.4	19
22	Live cell analyses of synaptonemal complex dynamics and chromosome movements in cultured mouse testis tubules and embryonic ovaries. Chromosoma, 2018, 127, 341-359.	2.2	19
23	AMPAR Auxiliary Protein SHISA6 Facilitates Purkinje Cell Synaptic Excitability and Procedural Memory Formation. Cell Reports, 2020, 31, 107515.	6.4	17
24	Uptake and subcellular distribution of radiolabeled polymersomes for radiotherapy. Nanotheranostics, 2020, 4, 14-25.	5.2	15
25	Incomplete meiotic sex chromosome inactivation in the domestic dog. BMC Genomics, 2015, 16, 291.	2.8	14
26	SMoLR: visualization and analysis of single-molecule localization microscopy data in R. BMC Bioinformatics, 2019, 20, 30.	2.6	14
27	Insulator speckles associated with long-distance chromatin contacts. Biology Open, 2016, 5, 1266-1274.	1.2	11
28	Alpha particle spectroscopy using FNTD and SIM superâ€resolution microscopy. Journal of Microscopy, 2018, 270, 326-334.	1.8	11
29	Threeâ€dimensional architecture of common benign and precancerous prostate epithelial lesions. Histopathology, 2019, 74, 1036-1044.	2.9	11
30	Structure–function relation of the developing calyx of Held synapse <i>in vivo</i> . Journal of Physiology, 2020, 598, 4603-4619.	2.9	8
31	Altered fibrin network structure and fibrinolysis in intensive care unit patients with COVIDâ€19, not entirely explaining the increased risk of thrombosis. Journal of Thrombosis and Haemostasis, 2022, 20, 1412-1420.	3.8	8
32	Quantitative 3D microscopy highlights altered von Willebrand factor αâ€granule storage in patients with von Willebrand disease with distinct pathogenic mechanisms. Research and Practice in Thrombosis and Haemostasis, 2021, 5, e12595.	2.3	7
33	Growth factor dependent changes in nanoscale architecture of focal adhesions. Scientific Reports, 2021, 11, 2315.	3.3	6
34	Does Fibrin Structure Contribute to the Increased Risk of Thrombosis in COVID-19 ICU Patients?. Blood, 2021, 138, 3208-3208.	1.4	3
35	Incorporation of a Valine–Leucine–Lysine-Containing Substrate in the Bacterial Cell Wall. Bioconjugate Chemistry, 2016, 27, 2418-2423.	3.6	2
36	Super-Resolution Immunofluorescence Imaging of Platelet Granules. Blood, 2019, 134, 3613-3613.	1.4	1

#	Article	IF	CITATIONS
37	Title is missing!. , 2020, 16, e1008595.		O
38	Title is missing!. , 2020, 16, e1008595.		O
39	Title is missing!. , 2020, 16, e1008595.		O
40	Title is missing!. , 2020, 16, e1008595.		O
41	Title is missing!. , 2020, 16, e1008595.		0
42	Title is missing!. , 2020, 16, e1008595.		0