Isabel C Neves

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2253529/publications.pdf

Version: 2024-02-01

172457 214800 2,711 93 29 47 citations h-index g-index papers 97 97 97 3176 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Nucleation of the Electroactive \hat{I}^3 Phase and Enhancement of the Optical Transparency in Low Filler Content Poly(vinylidene)/Clay Nanocomposites. Journal of Physical Chemistry C, 2011, 115, 18076-18082.	3.1	255
2	Antimicrobial activity of faujasite zeolites doped with silver. Microporous and Mesoporous Materials, 2012, 160, 126-132.	4.4	146
3	Zeolite Structures Loading with an Anticancer Compound As Drug Delivery Systems. Journal of Physical Chemistry C, 2012, 116, 25642-25650.	3.1	120
4	Dielectric relaxation, ac conductivity and electric modulus in poly(vinylidene fluoride)/NaY zeolite composites. Solid State Ionics, 2013, 235, 42-50.	2.7	104
5	Determination of the parameters affecting electrospun chitosan fiber size distribution and morphology. Carbohydrate Polymers, 2012, 87, 1295-1301.	10.2	90
6	Potentiation of 5-fluorouracil encapsulated in zeolites as drug delivery systems for in vitro models of colorectal carcinoma. Colloids and Surfaces B: Biointerfaces, 2013, 112, 237-244.	5.0	90
7	Photocatalytic degradation of Rhodamine B dye by cotton textile coated with SiO2-TiO2 and SiO2-TiO2-HY composites. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 346, 60-69.	3.9	74
8	Acylation of phenol with acetic acid over a HZSM5 zeolite, reaction scheme. Journal of Molecular Catalysis, 1994, 93, 169-179.	1.2	66
9	Catalytic behavior of 1-(2-pyridylazo)-2-naphthol transition metal complexes encapsulated in Y zeolite. Journal of Catalysis, 2011, 278, 102-110.	6.2	60
10	Study of silver species stabilized in different microporous zeolites. Microporous and Mesoporous Materials, 2013, 181, 83-87.	4.4	59
11	Zeolites as supports for the biorecovery of hexavalent and trivalent chromium. Microporous and Mesoporous Materials, 2008, 116, 555-560.	4.4	57
12	Bifunctional Porous Cobalt Phosphide Foam for High-Current-Density Alkaline Water Electrolysis with 4000-h Long Stability. ACS Sustainable Chemistry and Engineering, 2020, 8, 10193-10200.	6.7	57
13	Waste-based biosorbents as cost-effective alternatives to commercial adsorbents for the retention of fluoxetine from water. Separation and Purification Technology, 2020, 235, 116139.	7.9	52
14	Improved biosorption for Cr(VI) reduction and removal by Arthrobacter viscosus using zeolite. International Biodeterioration and Biodegradation, 2012, 74, 116-123.	3.9	48
15	Evaluation of ion exchange-modified Y and ZSM5 zeolites in Cr(VI) biosorption and catalytic oxidation of ethyl acetate. Applied Catalysis B: Environmental, 2012, 117-118, 406-413.	20.2	46
16	Highly efficient reduction of bromate to bromide over mono and bimetallic ZSM5 catalysts. Green Chemistry, 2015, 17, 4247-4254.	9.0	44
17	Mono and bimetallic NaY catalysts with high performance in nitrate reduction in water. Chemical Engineering Journal, 2015, 281, 411-417.	12.7	43
18	Microbial growth inhibition caused by Zn/Ag-Y zeolite materials with different amounts of silver. Colloids and Surfaces B: Biointerfaces, 2016, 142, 141-147.	5.0	43

#	Article	IF	CITATIONS
19	Electrical and thermal behavior of \hat{l}^3 -phase poly(vinylidene fluoride)/NaY zeolite composites. Microporous and Mesoporous Materials, 2012, 161, 98-105.	4.4	39
20	Encapsulation of \hat{l} ±-cyano-4-hydroxycinnamic acid into a NaY zeolite. Journal of Materials Science, 2011, 46, 7511-7516.	3.7	34
21	Photocatalytic performance of N-doped TiO2nano-SiO2-HY nanocomposites immobilized over cotton fabrics. Journal of Materials Research and Technology, 2019, 8, 1933-1943.	5.8	34
22	Y zeolite-supported niobium pentoxide catalysts for the glycerol acetalization reaction. Microporous and Mesoporous Materials, 2018, 271, 243-251.	4.4	33
23	Phenol acylation: unexpected improvement of the selectivity to o-hydroxyacetophenone by passivation of the external acid sites of HZSM5. Journal of the Chemical Society Chemical Communications, 1994, , 717-718.	2.0	32
24	The effect of acidity behaviour of Y zeolites on the catalytic degradation of polyethylene. European Polymer Journal, 2006, 42, 1541-1547.	5.4	32
25	Electrochemical oxidation of aniline at mono and bimetallic electrocatalysts supported on carbon nanotubes. Chemical Engineering Journal, 2015, 260, 309-315.	12.7	32
26	Synthesis and immobilization of molybdenum complexes in a pillared layered clay. Microporous and Mesoporous Materials, 2004, 72, 111-118.	4.4	30
27	Oxidation catalysts prepared from biosorbents supported on zeolites. Applied Catalysis B: Environmental, 2006, 66, 274-280.	20.2	30
28	1H Relaxivity of Water in Aqueous Suspensions of Gd3+-Loaded NaY Nanozeolites and AlTUD-1 Mesoporous Material:Â the Influence of Si/Al Ratio and Pore Size. Inorganic Chemistry, 2007, 46, 6190-6196.	4.0	30
29	Feedstock recycling of polyethylene over AlTUD-1 mesoporous catalyst. Polymer Degradation and Stability, 2007, 92, 1513-1519.	5.8	30
30	Immobilization of chromium complexes in zeolite Y obtained from biosorbents: Synthesis, characterization and catalytic behaviour. Applied Catalysis B: Environmental, 2010, 94, 1-7.	20.2	30
31	Reutilization of Cr-Y zeolite obtained by biosorption in the catalytic oxidation of volatile organic compounds. Journal of Hazardous Materials, 2011, 192, 545-553.	12.4	29
32	In vitro and in vivo studies of temozolomide loading in zeolite structures as drug delivery systems for glioblastoma. RSC Advances, 2015, 5, 28219-28227.	3.6	29
33	Immobilization of Fe(III) complexes of pyridazine derivatives prepared from biosorbents supported on zeolites. Microporous and Mesoporous Materials, 2008, 109, 163-171.	4.4	28
34	Enhancement of the Dielectric Constant and Thermal Properties of \hat{l} ±-Poly(vinylidene fluoride)/Zeolite Nanocomposites. Journal of Physical Chemistry C, 2010, 114, 14446-14452.	3.1	28
35	Highly efficient heterogeneous catalysts for phenol oxidation: Binuclear pyrrolyl-azine metal complexes encapsulated in NaY zeolite. Microporous and Mesoporous Materials, 2016, 227, 272-280.	4.4	27
36	Bromate reduction in water promoted by metal catalysts prepared over faujasite zeolite. Chemical Engineering Journal, 2016, 291, 199-205.	12.7	27

#	Article	IF	CITATIONS
37	Removal of Cr(VI) from Aqueous Solutions by a Bacterial Biofilm Supported on Zeolite: Optimisation of the Operational Conditions and Scaleâ€Up of the Bioreactor. Chemical Engineering and Technology, 2010, 33, 2008-2014.	1.5	25
38	Manganese complexes with triazenido ligands encapsulated in NaY zeolite as heterogeneous catalysts. Inorganica Chimica Acta, 2013, 394, 591-597.	2.4	25
39	Catalytic degradation of polyethylene: An evaluation of the effect of dealuminated Y zeolites using thermal analysis. Materials Chemistry and Physics, 2007, 104, 5-9.	4.0	23
40	Redox properties of (1-(2-pyridylazo)-2-naphthol)copper(II) encapsulated in Y Zeolite. Microporous and Mesoporous Materials, 2009, 117, 297-303.	4.4	23
41	Host–guest chemistry of the (N,N′-diarylacetamidine)rhodium(iii) complex in zeolite Y. Physical Chemistry Chemical Physics, 2009, 11, 6308.	2.8	23
42	Preparation and assessment of antimicrobial properties of bimetallic materials based on NaY zeolite. RSC Advances, 2015, 5, 37188-37195.	3. 6	23
43	Zeolite-encapsulated copper (II) complexes with N3O2 Schiff bases: synthesis and characterization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 115, 249-256.	4.7	22
44	Encapsulation of manganese(III) complex in NaY nanoporosity for heterogeneous catalysis. Applied Organometallic Chemistry, 2012, 26, 44-49.	3 . 5	22
45	Comparison of different silica microporous structures as drug delivery systems for in vitro models of solid tumors. RSC Advances, 2017, 7, 13104-13111.	3. 6	22
46	Kinetic Modeling of Phenol Acylation with Acetic Acid on HZSM5. Industrial & Engineering Chemistry Research, 1995, 34, 1624-1629.	3.7	21
47	Mechanism of Phenylacetate Transformation on Zeolites. Studies in Surface Science and Catalysis, 1991, 59, 513-522.	1.5	20
48	Copper(II)–Purine Complexes Encapsulated in NaY Zeolite. European Journal of Inorganic Chemistry, 2007, 2007, 1682-1689.	2.0	20
49	Kinetic and equilibrium studies of phosphorous adsorption: Effect of physical and chemical properties of adsorption agent. Ecological Engineering, 2015, 82, 527-530.	3.6	20
50	Effect of Zeolite Content in the Electrical, Mechanical and Thermal Degradation Response of Poly(vinylidene fluoride)/NaY Zeolite Composites. Journal of Nanoscience and Nanotechnology, 2012, 12, 6804-6810.	0.9	19
51	Surface functionalization of zeolite-based drug delivery systems enhances their antitumoral activity in vivo. Materials Science and Engineering C, 2021, 120, 111721.	7.3	19
52	Electrocatalytic oxidation of oxalic and oxamic acids in aqueous media at carbon nanotube modified electrodes. Electrochimica Acta, 2012, 60, 278-286.	5.2	17
53	Fe(III)-exchanged zeolites as efficient electrocatalysts for Fenton-like oxidation of dyes in aqueous phase. Journal of Environmental Chemical Engineering, 2022, 10, 107891.	6.7	17
54	Optical Properties of Nanostructures Obtained by Encapsulation of Cation Chromophores in Y Zeolite. Journal of Physical Chemistry C, 2010, 114, 10719-10724.	3.1	16

#	Article	IF	CITATIONS
55	Micro- and Mesoporous Structures as Drug Delivery Carriers for Salicylic Acid. Journal of Physical Chemistry C, 2015, 119, 3589-3595.	3.1	16
56	Synthesis, characterization and <i>in vitro</i> validation of a magnetic zeolite nanocomposite with <i>T</i> ₂ -MRI properties towards theranostic applications. Journal of Materials Chemistry B, 2019, 7, 3351-3361.	5.8	15
57	Electrochemical oxidation of amoxicillin on carbon nanotubes and carbon nanotube supported metal modified electrodes. Catalysis Today, 2020, 357, 322-331.	4.4	15
58	Host(beta zeolite)–guest (copper(ii)–methyladenine complex) nanomaterials: synthesis and characterization. New Journal of Chemistry, 2008, 32, 2263.	2.8	14
59	Effect of the supporting zeolite structure on Cr biosorption: Performance of a single-step reactor and of a sequential batch reactor—A comparison study. Chemical Engineering Journal, 2010, 163, 22-27.	12.7	14
60	Stability of nanocomposites of poly($\hat{l}\mu$ -caprolactone) with tungsten trioxide. Journal of Polymer Research, 2011, 18, 1743-1749.	2.4	14
61	Copper(II)–imidaâ€salen Complexes Encapsulated into NaY Zeolite for Oxidations Reactions. European Journal of Inorganic Chemistry, 2013, 2013, 5408-5417.	2.0	14
62	Zeolite addition to improve biohydrogen production from dark fermentation of C5/C6-sugars and Sargassum sp. biomass. Scientific Reports, 2021, 11, 16350.	3.3	14
63	A sustained approach to environmental catalysis: Reutilization of chromium from wastewater. Critical Reviews in Environmental Science and Technology, 2016, 46, 1622-1657.	12.8	13
64	Modification of microfluidic paper-based devices with dye nanomaterials obtained by encapsulation of compounds in Y and ZSM5 zeolites. Sensors and Actuators B: Chemical, 2018, 261, 66-74.	7.8	13
65	BIOSORPTION OF HEXAVALENT CHROMIUM BASED ON MODIFIED Y ZEOLITES OBTAINED BY ALKALI-TREATMENT. Environmental Engineering and Management Journal, 2010, 9, 305-311.	0.6	13
66	The electrochemical mineralization of oxalic and oxamic acids using modified electrodes based on carbon nanotubes. Chemical Engineering Journal, 2013, 228, 374-380.	12.7	12
67	Oxidation of Volatile Organic Compounds by Highly Efficient Metal Zeolite Catalysts. ChemCatChem, 2018, 10, 3754-3760.	3.7	11
68	Electrochemical and Catalytic Studies of a Manganese(III)Complex with a Tetradentate Schiffâ€Base Ligand Encapsulated in NaY Zeolite. European Journal of Inorganic Chemistry, 2013, 2013, 2768-2776.	2.0	10
69	Internalization studies on zeolite nanoparticles using human cells. Journal of Materials Chemistry B, 2018, 6, 469-476.	5.8	10
70	Influence of solvent properties on the electrical response of poly(vinylidene fluoride)/NaY composites. Journal of Polymer Research, 2013, 20, 1.	2.4	9
71	Metal Ion–Zeolite Materials against Resistant Bacteria, MRSA. Industrial & Engineering Chemistry Research, 2021, 60, 12883-12892.	3.7	9
72	Norbornene Oxidation by Chiral Complexes Encapsulated in NaY Zeolite. Journal of Physical Chemistry C, 2014, 118, 19042-19050.	3.1	8

#	Article	IF	CITATIONS
73	Ion Exchange Dependent Electroactive Phase Content and Electrical Properties of Poly(vinylidene) Tj ETQq1 1 0.7	'84314 rgB	T _g Overlock
74	Metal-zeolite catalysts for the removal of pharmaceutical pollutants in water by catalytic ozonation. Journal of Environmental Chemical Engineering, 2021, 9, 106458.	6.7	8
75	Fenton-Type Bimetallic Catalysts for Degradation of Dyes in Aqueous Solutions. Catalysts, 2021, 11, 32.	3.5	8
76	Iron and Chromium Removal from Binary Solutions of Fe(III)/Cr(III) and Fe(III)/Cr(VI) by Biosorbents Supported on Zeolites. Materials Science Forum, 0, 587-588, 463-467.	0.3	7
77	Study of the Electroreactivity of Amoxicillin on Carbon Nanotubeâ€Supported Metal Electrodes. ChemCatChem, 2018, 10, 4900-4909.	3.7	7
78	Encapsulation and characterisation of cationic benzo $[\langle i \rangle a \langle i \rangle]$ phenoxazines in zeolite HY. New Journal of Chemistry, 2019, 43, 15785-15792.	2.8	7
79	Electrochemical oxidation of diclofenac on CNT and M/CNT modified electrodes. New Journal of Chemistry, 2021, 45, 12622-12633.	2.8	7
80	Immobilization of Mo(IV) complex in hybrid matrix obtained via sol–gel technique. Journal of Alloys and Compounds, 2003, 360, 272-278.	5.5	6
81	Organic–inorganic hybrid matrix doped with alkenyldiazenido complexes of molybdenum. Journal of Alloys and Compounds, 2008, 454, 72-77.	5.5	6
82	Nanocomposites of poly($\hat{l}\mu$ -caprolactone) doped with titanium species. Journal of Materials Science, 2013, 48, 3578-3585.	3.7	6
83	Oxidation of cyclohexanol and cyclohexene with triazenido complexes of chromium immobilized in biosorption FAU supports. Chemical Engineering Journal, 2014, 247, 134-141.	12.7	6
84	Binuclear furanyl-azine metal complexes encapsulated in NaY zeolite as efficiently heterogeneous catalysts for phenol hydroxylation. Journal of Molecular Structure, 2020, 1206, 127687.	3.6	5
85	Oxidation of pollutants ⟨i⟩via⟨ i⟩ an electro-Fenton-like process in aqueous media using iron–zeolite modified electrodes. New Journal of Chemistry, 2021, 45, 12750-12757.	2.8	5
86	Performance of self-cleaning cotton textiles coated with TiO2, TiO2-SiO2 and TiO2-SiO2-HY in removing Rhodamine B and Reactive Red 120 dyes from aqueous solutions., 0, 223, 447-455.		5
87	Encapsulated pyridazine Cr(III) complexes prepared from biosorbents supported in zeolites. Studies in Surface Science and Catalysis, 2005, 158, 1073-1080.	1.5	4
88	Tungsten hydride complex as a template in organic–inorganic hybrid materials. Solid State Sciences, 2003, 5, 519-523.	3.2	3
89	Compounds responsible for the deactivation of H-USY zeolite during the alkylation of phenol with methanol. Reaction Kinetics and Catalysis Letters, 1990, 41, 327-332.	0.6	1
90	Effect of Concentration of the Diazoalcene Molybdenum Complex Immobilized in Ureasil Matrix. Journal of Sol-Gel Science and Technology, 2004, 32, 353-356.	2.4	1

ISABEL C NEVES

#	Article	IF	CITATIONS
91	Noncovalent Anchoring of Hydride Tungsten Complex on Mesoporous Materials. Studies in Surface Science and Catalysis, 2006, 162, 417-424.	1.5	1
92	Recovery of Cr-biosorption supports as catalysts for the oxidation of cyclohexanol. Journal of Biotechnology, 2010, 150, 248-248.	3.8	0
93	413 Enhancing 5-FU Activity in Colorectal Carcinoma-derived Cell Lines – Combination With Monocarboxylate Transporter Inhibitors and Encapsulation into Zeolites. European Journal of Cancer, 2012, 48, S100.	2.8	O