José Antonio SÃ;nchez-AlcÃ;zar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2253145/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vitamin E prevents lipid peroxidation and iron accumulation in PLA2G6-Associated Neurodegeneration. Neurobiology of Disease, 2022, 165, 105649.	4.4	23
2	Pterostilbene in Combination With Mitochondrial Cofactors Improve Mitochondrial Function in Cellular Models of Mitochondrial Diseases. Frontiers in Pharmacology, 2022, 13, 862085.	3.5	8
3	UPRmt activation improves pathological alterations in cellular models of mitochondrial diseases. Orphanet Journal of Rare Diseases, 2022, 17, 204.	2.7	11
4	Modeling Mitochondrial Encephalomyopathy, Lactic Acidosis, and Stroke-Like Episodes Syndrome Using Patient-Derived Induced Neurons Generated by Direct Reprogramming. Cellular Reprogramming, 2022, 24, 294-303.	0.9	2
5	Activation of the Mitochondrial Unfolded Protein Response: A New Therapeutic Target?. Biomedicines, 2022, 10, 1611.	3.2	15
6	EGFR-targeting antitumor therapy: Neuregulins or antibodies?. European Journal of Pharmaceutical Sciences, 2021, 158, 105678.	4.0	4
7	Coenzyme Q10 Analogues: Benefits and Challenges for Therapeutics. Antioxidants, 2021, 10, 236.	5.1	32
8	From Mitochondria to Atherosclerosis: The Inflammation Path. Biomedicines, 2021, 9, 258.	3.2	32
9	Down regulation of the expression of mitochondrial phosphopantetheinyl-proteins in pantothenate kinase-associated neurodegeneration: pathophysiological consequences and therapeutic perspectives. Orphanet Journal of Rare Diseases, 2021, 16, 201.	2.7	10
10	Mitochondria and Antibiotics: For Good or for Evil?. Biomolecules, 2021, 11, 1050.	4.0	22
11	Precision Medicine in Rare Diseases. Diseases (Basel, Switzerland), 2020, 8, 42.	2.5	13
12	Coenzyme Q10: Novel Formulations and Medical Trends. International Journal of Molecular Sciences, 2020, 21, 8432.	4.1	39
13	<p>Mitochondrial Imbalance as a New Approach to the Study of Fibromyalgia</p> . Open Access Rheumatology: Research and Reviews, 2020, Volume 12, 175-185.	1.6	3
14	Parkin-mediated mitophagy and autophagy flux disruption in cellular models of MERRF syndrome. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165726.	3.8	22
15	Advances in mt-tRNA Mutation-Caused Mitochondrial Disease Modeling: Patients' Brain in a Dish. Frontiers in Genetics, 2020, 11, 610764.	2.3	7
16	Atherosclerosis and Coenzyme Q10. International Journal of Molecular Sciences, 2019, 20, 5195.	4.1	27
17	The MELAS mutation m.3243A>G alters the expression of mitochondrial tRNA fragments. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 1433-1449.	4.1	24
18	Pathophysiological characterization of MERRF patient-specific induced neurons generated by direct reprogramming. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 861-881.	4.1	22

#	Article	IF	CITATIONS
19	Pantothenate Rescues Iron Accumulation in Pantothenate Kinase-Associated Neurodegeneration Depending on the Type of Mutation. Molecular Neurobiology, 2019, 56, 3638-3656.	4.0	36
20	Precision medicine in pantothenate kinase-associated neurodegeneration. Neural Regeneration Research, 2019, 14, 1177.	3.0	11
21	The non-canonical Wnt-PCP pathway shapes the caudal neural plate. Development (Cambridge), 2018, 145, .	2.5	22
22	The Effect of Copper on Endometrial Receptivity and Induction of Apoptosis on Decidualized Human Endometrial Stromal Cells. Reproductive Sciences, 2018, 25, 985-999.	2.5	23
23	Intracellular cholesterol accumulation and coenzyme Q10 deficiency in Familial Hypercholesterolemia. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 3697-3713.	3.8	20
24	Amitriptyline down-regulates coenzyme Q10 biosynthesis in lung cancer cells. European Journal of Pharmacology, 2017, 797, 75-82.	3.5	7
25	Effect of Coenzyme Q ₁₀ on Psychopathological Symptoms in Fibromyalgia Patients. CNS Neuroscience and Therapeutics, 2017, 23, 188-189.	3.9	14
26	Fluorinated Chaperoneâ^'î²-Cyclodextrin Formulations for β-Glucocerebrosidase Activity Enhancement in Neuronopathic Gaucher Disease. Journal of Medicinal Chemistry, 2017, 60, 1829-1842.	6.4	34
27	Antidepressants induce autophagy dependent-NLRP3-inflammasome inhibition in Major depressive disorder. Pharmacological Research, 2017, 121, 114-121.	7.1	159
28	Two coffins and a funeral: early or late caspase activation determines two types of apoptosis induced by DNA damaging agents. Apoptosis: an International Journal on Programmed Cell Death, 2017, 22, 421-436.	4.9	9
29	Coenzyme Q10 partially restores pathological alterations in a macrophage model of Gaucher disease. Orphanet Journal of Rare Diseases, 2017, 12, 23.	2.7	14
30	Dynamic Reorganization of the Cytoskeleton during Apoptosis: The Two Coffins Hypothesis. International Journal of Molecular Sciences, 2017, 18, 2393.	4.1	74
31	Mitochondrial Dynamics in Mitochondrial Diseases. Diseases (Basel, Switzerland), 2017, 5, 1.	2.5	142
32	The Connections Among Autophagy, Inflammasome and Mitochondria. Current Drug Targets, 2017, 18, 1030-1038.	2.1	14
33	Amitriptyline induces mitophagy that precedes apoptosis in human HepG2 cells. Genes and Cancer, 2016, 7, 260-277.	1.9	23
34	AMPK Regulation of Cell Growth, Apoptosis, Autophagy, and Bioenergetics. Exs, 2016, 107, 45-71.	1.4	60
35	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
36	Mutation in cytochrome b gene of mitochondrial DNA in a family with fibromyalgia is associated with NLRP3-inflammasome activation. Journal of Medical Genetics, 2016, 53, 113-122.	3.2	26

#	Article	IF	CITATIONS
37	3697G>A in MT-ND1 is a causative mutation in mitochondrial disease. Mitochondrion, 2016, 28, 54-59.	3.4	12
38	Targeting autophagy and mitophagy for mitochondrial diseases treatment. Expert Opinion on Therapeutic Targets, 2016, 20, 487-500.	3.4	31
39	Stress-Induced Depressive Behaviors Require a Functional NLRP3 Inflammasome. Molecular Neurobiology, 2016, 53, 4874-4882.	4.0	134
40	AMPK Phosphorylation Modulates Pain by Activation of NLRP3 Inflammasome. Antioxidants and Redox Signaling, 2016, 24, 157-170.	5.4	85
41	AMPK As A Target in Rare Diseases. Current Drug Targets, 2016, 17, 921-931.	2.1	9
42	Pharmacological Chaperones and Coenzyme Q10 Treatment Improves Mutant β-Glucocerebrosidase Activity and Mitochondrial Function in Neuronopathic Forms of Gaucher Disease. Scientific Reports, 2015, 5, 10903.	3.3	107
43	Mitochondrial Myopathy in Follow-up of a Patient With Chronic Fatigue Syndrome. Journal of Investigative Medicine High Impact Case Reports, 2015, 3, 232470961560790.	0.6	6
44	Emerging roles of apoptotic microtubules during the execution phase of apoptosis. Cytoskeleton, 2015, 72, 435-446.	2.0	15
45	Oxidative stress, mitochondrial dysfunction and, inflammation common events in skin of patients with Fibromyalgia. Mitochondrion, 2015, 21, 69-75.	3.4	53
46	Mitochondrial responsibility in ageing process: innocent, suspect or guilty. Biogerontology, 2015, 16, 599-620.	3.9	61
47	Metformin and caloric restriction induce an AMPK-dependent restoration of mitochondrial dysfunction in fibroblasts from Fibromyalgia patients. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 1257-1267.	3.8	33
48	The effect of maternal diabetes on the Wnt/PCP pathway during embryogenesis as reflected in the developing mouse eye. DMM Disease Models and Mechanisms, 2015, 8, 157-68.	2.4	12
49	Critical role of AMP-activated protein kinase in the balance between mitophagy and mitochondrial biogenesis in MELAS disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 2535-2553.	3.8	42
50	Clinical applications of coenzyme Qâ,ê,€. Frontiers in Bioscience - Landmark, 2014, 19, 619.	3.0	116
51	Stabilization of apoptotic cells: generation of zombie cells. Cell Death and Disease, 2014, 5, e1369-e1369.	6.3	7
52	NLRP3 Inflammasome Is Activated in Fibromyalgia: The Effect of Coenzyme Q ₁₀ . Antioxidants and Redox Signaling, 2014, 20, 1169-1180.	5.4	75
53	Coenzyme Q ₁₀ Therapy. Molecular Syndromology, 2014, 5, 187-197.	0.8	118
54	Aging-Related Changes in Inflammatory and LKB1/AMPK Gene Expression in Fibromyalgia Patients. CNS Neuroscience and Therapeutics, 2014, 20, 476-478.	3.9	2

#	Article	IF	CITATIONS
55	PEGylated versus non-PEGylated magnetic nanoparticles as camptothecin delivery system. Beilstein Journal of Nanotechnology, 2014, 5, 1312-1319.	2.8	36
56	NLRP3 inflammasome is activated in mononuclear blood cells from patients with major depressive disorder. Brain, Behavior, and Immunity, 2014, 36, 111-117.	4.1	343
5 7	Targeted delivery of pharmacological chaperones for Gaucher disease to macrophages by a mannosylated cyclodextrin carrier. Organic and Biomolecular Chemistry, 2014, 12, 2289-2301.	2.8	44
58	Apoptotic cells subjected to cold/warming exposure disorganize apoptotic microtubule network and undergo secondary necrosis. Apoptosis: an International Journal on Programmed Cell Death, 2014, 19, 1364-1377.	4.9	7
59	Coenzyme Q10 Regulates Serotonin Levels and Depressive Symptoms in Fibromyalgia Patients. Journal of Clinical Psychopharmacology, 2014, 34, 277-278.	1.4	21
60	Can Coenzyme Q ₁₀ Improve Clinical and Molecular Parameters in Fibromyalgia?. Antioxidants and Redox Signaling, 2013, 19, 1356-1361.	5.4	66
61	Is Inflammation a Mitochondrial Dysfunction-Dependent Event in Fibromyalgia?. Antioxidants and Redox Signaling, 2013, 18, 800-807.	5.4	63
62	Apoptotic microtubules delimit an active caspase free area in the cellular cortex during the execution phase of apoptosis. Cell Death and Disease, 2013, 4, e527-e527.	6.3	24
63	Laminin and integrin expression in the ventral ectodermal ridge of the mouse embryo: Implications for regulation of BMP signalling. Developmental Dynamics, 2012, 241, 1808-1815.	1.8	2
64	Screening of effective pharmacological treatments for MELAS syndrome using yeasts, fibroblasts and cybrid models of the disease. British Journal of Pharmacology, 2012, 167, 1311-1328.	5.4	38
65	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
66	Oral coenzyme Q10 supplementation improves clinical symptoms and recovers pathologic alterations in blood mononuclear cells in a fibromyalgia patient. Nutrition, 2012, 28, 1200-1203.	2.4	40
67	Recovery of MERRF Fibroblasts and Cybrids Pathophysiology by Coenzyme Q10. Neurotherapeutics, 2012, 9, 446-463.	4.4	43
68	Oral treatment with amitriptyline induces coenzyme Q deficiency and oxidative stress in psychiatric patients. Journal of Psychiatric Research, 2012, 46, 341-345.	3.1	45
69	The hypoxic preconditioning agent deferoxamine induces poly(ADP-ribose) polymerase-1-dependent inhibition of the mitochondrial respiratory chain. Molecular and Cellular Biochemistry, 2012, 363, 101-108.	3.1	12
70	Oxidative Stress Correlates with Headache Symptoms in Fibromyalgia: Coenzyme Q10 Effect on Clinical Improvement. PLoS ONE, 2012, 7, e35677.	2.5	80
71	Coenzyme Q10: A novel therapeutic approach for Fibromyalgia? Case series with 5 patients. Mitochondrion, 2011, 11, 623-625.	3.4	38
72	Amitriptyline induces coenzyme Q deficiency and oxidative damage in mouse lung and liver. Toxicology Letters, 2011, 204, 32-37.	0.8	16

#	Article	IF	CITATIONS
73	Secondary coenzyme Q ₁₀ deficiency triggers mitochondria degradation by mitophagy in MELAS fibroblasts. FASEB Journal, 2011, 25, 2669-2687.	0.5	122
74	Apoptotic microtubule network organization and maintenance depend on high cellular ATP levels and energized mitochondria. Apoptosis: an International Journal on Programmed Cell Death, 2011, 16, 404-424.	4.9	24
75	Acute oxidant damage promoted on cancer cells by amitriptyline in comparison with some common chemotherapeutic drugs. Anti-Cancer Drugs, 2010, 21, 932-944.	1.4	40
76	Mitochondrial dysfunction in skin biopsies and blood mononuclear cells from two cases of fibromyalgia patients. Clinical Biochemistry, 2010, 43, 1174-1176.	1.9	19
77	Mitochondrial dysfunction and mitophagy activation in blood mononuclear cells of fibromyalgia patients: implications in the pathogenesis of the disease. Arthritis Research and Therapy, 2010, 12, R17.	3.5	120
78	Coenzyme Q deficiency triggers mitochondria degradation by mitophagy. Autophagy, 2009, 5, 19-32.	9.1	179
79	Coenzyme Q10 and alpha-tocopherol protect against amitriptyline toxicity. Toxicology and Applied Pharmacology, 2009, 235, 329-337.	2.8	34
80	Coenzyme Q10 distribution in blood is altered in patients with Fibromyalgia. Clinical Biochemistry, 2009, 42, 732-735.	1.9	60
81	Coenzyme Q10 deficiency associated with a mitochondrial DNA depletion syndrome: A case report. Clinical Biochemistry, 2009, 42, 742-745.	1.9	25
82	Cell Survival from Chemotherapy Depends on NF-κB Transcriptional Up-Regulation of Coenzyme Q Biosynthesis. PLoS ONE, 2009, 4, e5301.	2.5	41
83	Analysis of Coenzyme Q10 in muscle and fibroblasts for the diagnosis of CoQ10 deficiency syndromes. Clinical Biochemistry, 2008, 41, 697-700.	1.9	65
84	Cytotoxic effects of amitriptyline in human fibroblasts. Toxicology, 2008, 243, 51-58.	4.2	20
85	Missense mutation of the COQ2 gene causes defects of bioenergetics and de novo pyrimidine synthesis. Human Molecular Genetics, 2007, 16, 1091-1097.	2.9	129
86	Clinical, biochemical and molecular aspects of cerebellar ataxia and Coenzyme Q10 deficiency. Cerebellum, 2007, 6, 118-122.	2.5	51
87	The apoptotic microtubule network preserves plasma membrane integrity during the execution phase of apoptosis. Apoptosis: an International Journal on Programmed Cell Death, 2007, 12, 1195-1208.	4.9	44
88	Cerebellar ataxia with coenzyme Q10 deficiency: Diagnosis and follow-up after coenzyme Q10 supplementation. Journal of the Neurological Sciences, 2006, 246, 153-158.	0.6	94
89	Nuclear caspase-3 and capase-7 activation, and Poly(ADP-ribose) polymerase cleavage are early events in camptothecin-induced apoptosis. Apoptosis: an International Journal on Programmed Cell Death, 2006, 11, 131-139.	4.9	42
90	Chemotherapy induces an increase in coenzyme Q10 levels in cancer cell lines. Free Radical Biology and Medicine, 2006, 40, 1293-1302.	2.9	61

#	Article	IF	CITATIONS
91	Camptothecin-induced apoptosis in non-small cell lung cancer is independent of cyclooxygenase expression. Apoptosis: an International Journal on Programmed Cell Death, 2003, 8, 639-647.	4.9	11
92	Cyclooxygenase (COX) inhibitors induce apoptosis in non-small cell lung cancer through cyclooxygenase independent pathways. Lung Cancer, 2003, 40, 33-44.	2.0	66
93	Reactive oxygen species mediate the down-regulation of mitochondrial transcripts and proteins by tumour necrosis factor-alpha in L929 cells. Biochemical Journal, 2003, 370, 609-619.	3.7	20
94	Increased mitochondrial cytochrome c levels and mitochondrial hyperpolarization precede camptothecin-induced apoptosis in Jurkat cells. Cell Death and Differentiation, 2000, 7, 1090-1100.	11.2	154
95	Collagen α1(I) Gene Contains an Element Responsive to Tumor Necrosis Factor-α Located in the 5' Untranslated Region of Its First Exon. DNA and Cell Biology, 2000, 19, 341-352.	1.9	25
96	Tumor Necrosis Factor-α Increases the Steady-state Reduction of Cytochrome b of the Mitochondrial Respiratory Chain in Metabolically Inhibited L929 Cells. Journal of Biological Chemistry, 2000, 275, 13353-13361.	3.4	78
97	Effects of Ethanol and Dexamethasone on Epidermis Examined by in Vitro 31P Magnetic Resonance Spectroscopy. Journal of Pharmaceutical Sciences, 1998, 87, 249-255.	3.3	3
98	G Proteins Are Involved in the Suppression of Collagen α1(I) Gene Expression in Cultured Rat Hepatic Stellate Cells. Cellular Signalling, 1998, 10, 173-183.	3.6	16
99	Tumor Necrosis Factor-α Increases ATP Content in Metabolically Inhibited L929 Cells Preceding Cell Death. Journal of Biological Chemistry, 1997, 272, 30167-30177.	3.4	49
100	Tumor necrosis factor alpha inhibits collagen alpha 1(I) gene expression in rat hepatic stellate cells through a G protein. Gastroenterology, 1997, 113, 625-640.	1.3	57
101	Somatostatin reduces the levels of tumor necrosis factor alpha in a rat model of endotoxemia induced bylipopolysaccharide. Research in Experimental Medicine, 1995, 195, 317-325.	0.7	15
102	Down-regulation of Tumor Necrosis Factor Receptors by Blockade of Mitochondrial Respiration. Journal of Biological Chemistry, 1995, 270, 23944-23950.	3.4	19
103	The Apoptotic Microtubule Network During the Execution Phase of Apoptosis. , 0, , .		1